Solid-state nanopore localization by controlled breakdown of selectively thinned membranes

We demonstrate precise positioning of nanopores fabricated by controlled breakdown (CBD) on solid-state membranes by spatially varying the electric field strength with localized membrane thinning. We show 100 × 100 nm2 precision in standard SiN x membranes (30-100 nm thick) after selective thinning by as little as 25% with a helium ion beam. Control over nanopore position is achieved through the strong dependence of the electric field-driven CBD mechanism on membrane thickness. Confinement of pore formation to the thinned region of the membrane is confirmed by TEM imaging and by analysis of DNA translocations. These results enhance the functionality of CBD as a fabrication approach and enable the production of advanced nanopore devices for single-molecule sensing applications.

[1]  Furat Sawafta,et al.  Solid-state nanopores and nanopore arrays optimized for optical detection. , 2014, Nanoscale.

[2]  Richard H. Livengood,et al.  Subsurface damage from helium ions as a function of dose, beam energy, and dose rate , 2009 .

[3]  V. F. Reutov,et al.  Formation of ordered helium pores in amorphous silicon subjected to low-energy helium ion irradiation , 2003 .

[4]  R. Degraeve,et al.  Accurate and robust noise-based trigger algorithm for soft breakdown detection in ultra thin oxides , 2001, 2001 IEEE International Reliability Physics Symposium Proceedings. 39th Annual (Cat. No.00CH37167).

[5]  Jingmin Jin,et al.  Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. , 2010, Nature nanotechnology.

[6]  P. C. Jong,et al.  Helium desorption/permeation from bubbles in silicon: A novel method of void production , 1987 .

[7]  A. Hall,et al.  Direct and transmission milling of suspended silicon nitride membranes with a focused helium ion beam. , 2012, Scanning.

[8]  Aleksei Aksimentiev,et al.  Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA , 2015, ACS nano.

[9]  E. S. Sadki,et al.  Embedding a Carbon Nanotube across the Diameter of a Solid State Nanopore , 2011, 1308.1128.

[10]  A. Hall,et al.  Selective detection and quantification of modified DNA with solid-state nanopores. , 2014, Nano letters.

[11]  N. Yokoyama,et al.  Conduction tuning of graphene based on defect-induced localization. , 2013, ACS nano.

[12]  Jurriaan Schmitz,et al.  Comparison of soft-breakdown triggers for large-area capacitors under constant voltage stress , 2001 .

[13]  Peiming Zhang,et al.  Slowing DNA translocation through a nanopore using a functionalized electrode. , 2013, ACS nano.

[14]  S. Maier,et al.  Precise attoliter temperature control of nanopore sensors using a nanoplasmonic bullseye. , 2015, Nano letters.

[15]  Sanmeet S. Chahal,et al.  Kinetics of nanopore fabrication during controlled breakdown of dielectric membranes in solution , 2015, Nanotechnology.

[16]  Cees Dekker,et al.  Modeling the conductance and DNA blockade of solid-state nanopores , 2011, Nanotechnology.

[17]  R. Livengood,et al.  Mechanism and applications of helium transmission milling in thin membranes , 2014 .

[18]  Klaus Schulten,et al.  Detection and Quantification of Methylation in DNA using Solid-State Nanopores , 2013, Scientific Reports.

[19]  S. Lindsay,et al.  Single Molecule Spectroscopy of Amino Acids and Peptides by Recognition Tunneling , 2014, Nature nanotechnology.

[20]  Kyle Briggs,et al.  Nanopore Fabrication by Controlled Dielectric Breakdown , 2014, PloS one.

[21]  L. Qin,et al.  Rapid and precise scanning helium ion microscope milling of solid-state nanopores for biomolecule detection , 2011, Nanotechnology.

[22]  David W. McComb,et al.  DNA Tunneling Detector Embedded in a Nanopore , 2010, Nano letters.

[23]  D. McNabb,et al.  Electrical characterization of protein molecules by a solid-state nanopore. , 2007, Applied physics letters.

[24]  Jin He,et al.  Chemical recognition and binding kinetics in a functionalized tunnel junction , 2012, Nanotechnology.

[25]  D. Leung,et al.  Dielectric breakdown, defects and reliability in SiN MIMCAPs , 1998, 1998 GaAs Reliability Workshop. Proceedings (Cat. No.98EX219).

[26]  L. M. Howe,et al.  HELIUM BUBBLES IN SILICON : STRUCTURE AND OPTICAL PROPERTIES , 1995 .

[27]  A. Hall In Situ Thickness Assessment During Ion Milling of a Free-Standing Membrane Using Transmission Helium Ion Microscopy , 2013, Microscopy and Microanalysis.

[28]  K. Briggs,et al.  Long Passage Times of Short ssDNA Molecules through Metallized Nanopores Fabricated by Controlled Breakdown , 2014 .

[29]  M. Drndić,et al.  Fabrication and characterization of nanopores with insulated transverse nanoelectrodes for DNA sensing in salt solution , 2012, Electrophoresis.

[30]  S. U. Campisano,et al.  Gettering of metals by voids in silicon , 1995 .

[31]  M. Godin,et al.  Precise control of the size and noise of solid-state nanopores using high electric fields , 2012, Nanotechnology.

[32]  D. Branton,et al.  The potential and challenges of nanopore sequencing , 2008, Nature Biotechnology.

[33]  Ronald W. Davis,et al.  Control of DNA capture by nanofluidic transistors. , 2012, ACS nano.

[34]  C.H. Tung,et al.  Multiple Digital Breakdowns and Its Consequence on Ultrathin Gate Dielectrics Reliability Prediction , 2007, 2007 IEEE International Electron Devices Meeting.

[35]  R. Livengood,et al.  In Situ Mitigation of Subsurface and Peripheral Focused Ion Beam Damage via Simultaneous Pulsed Laser Heating. , 2016, Small.

[36]  Furat Sawafta,et al.  Membrane Thickness Dependence of Nanopore Formation with a Focused Helium Ion Beam , 2014, Sensors.

[37]  S. Maier,et al.  Rapid ultrasensitive single particle surface-enhanced Raman spectroscopy using metallic nanopores. , 2013, Nano letters.

[38]  F. Fortuna,et al.  Formation and growth of nanocavities and cavities induced by He+ implantation in silicon , 2012 .

[39]  C. Dekker,et al.  DNA Translocations through Solid-State Plasmonic Nanopores , 2014, Nano letters.

[40]  Chuan He,et al.  Quantifying mammalian genomic DNA hydroxymethylcytosine content using solid-state nanopores , 2016, Scientific Reports.

[41]  B. Luan,et al.  Electrochemical characterization of thin film electrodes toward developing a DNA transistor. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[42]  Kyle Briggs,et al.  Automated fabrication of 2-nm solid-state nanopores for nucleic acid analysis. , 2014, Small.

[43]  Cees Dekker,et al.  Self-Aligned Plasmonic Nanopores by Optically Controlled Dielectric Breakdown. , 2015, Nano letters.

[44]  Michel Godin,et al.  Integrating nanopore sensors within microfluidic channel arrays using controlled breakdown. , 2015, Lab on a chip.

[45]  M. Wanunu Nanopores: A journey towards DNA sequencing. , 2012, Physics of life reviews.

[46]  U. Keyser,et al.  Salt dependence of ion transport and DNA translocation through solid-state nanopores. , 2006, Nano letters.

[47]  Gustavo Stolovitzky,et al.  Fixed-Gap Tunnel Junction for Reading DNA Nucleotides , 2014, ACS nano.

[48]  M. J. Kim,et al.  High precision fabrication and positioning of nanoelectrodes in a nanopore. , 2014, ACS nano.