PAX5 biallelic genomic alterations define a novel subgroup of B-cell precursor acute lymphoblastic leukemia

[1]  A. Korobeynikov,et al.  Sequence Analysis , 2020, Encyclopedia of Bioinformatics and Computational Biology.

[2]  F. Sigaux,et al.  PAX5 P80R mutation identifies a novel subtype of B-cell precursor acute lymphoblastic leukemia with favorable outcome. , 2019, Blood.

[3]  Ashley D. Hill,et al.  PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia , 2019, Nature Genetics.

[4]  J. Stuchly,et al.  Genomic landscape of pediatric B-other acute lymphoblastic leukemia in a consecutive European cohort , 2019, Haematologica.

[5]  C. Pui,et al.  Transcriptional landscape of B cell precursor acute lymphoblastic leukemia based on an international study of 1,223 cases , 2018, Proceedings of the National Academy of Sciences.

[6]  Yunyu Zhang,et al.  Constitutive Ras signaling and Ink4a/Arf inactivation cooperate during the development of B-ALL in mice. , 2017, Blood advances.

[7]  M. Brüggemann,et al.  Minimal residual disease in adult ALL: technical aspects and implications for correct clinical interpretation. , 2017, Blood advances.

[8]  C. Mullighan,et al.  Genetic Basis of Acute Lymphoblastic Leukemia. , 2017, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[9]  W. Hiddemann,et al.  Adults with Philadelphia chromosome–like acute lymphoblastic leukemia frequently have IGH-CRLF2 and JAK2 mutations, persistence of minimal residual disease and poor prognosis , 2017, Haematologica.

[10]  K. Okamura,et al.  ZNF384-related fusion genes define a subgroup of childhood B-cell precursor acute lymphoblastic leukemia with a characteristic immunotype , 2017, Haematologica.

[11]  T. Graeber,et al.  Metabolic gatekeeper function of B-lymphoid transcription factors , 2016, Nature.

[12]  Minoru Kanehisa,et al.  KEGG: new perspectives on genomes, pathways, diseases and drugs , 2016, Nucleic Acids Res..

[13]  Guido Marcucci,et al.  Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia , 2016, Nature Communications.

[14]  B. Johansson,et al.  Identification of ETV6-RUNX1-like and DUX4-rearranged subtypes in paediatric B-cell precursor acute lymphoblastic leukaemia , 2016, Nature Communications.

[15]  L. McIntosh,et al.  Structural and Dynamics Studies of Pax5 Reveal Asymmetry in Stability and DNA Binding by the Paired Domain. , 2016, Journal of molecular biology.

[16]  O. Hofmann,et al.  VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research , 2016, Nucleic acids research.

[17]  Eric Talevich,et al.  CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing , 2016, PLoS Comput. Biol..

[18]  Shinichi Morishita,et al.  Recurrent DUX4 fusions in B cell acute lymphoblastic leukemia of adolescents and young adults , 2016, Nature Genetics.

[19]  F. Cunningham,et al.  The Ensembl Variant Effect Predictor , 2016, Genome Biology.

[20]  J. Mesirov,et al.  The Molecular Signatures Database Hallmark Gene Set Collection , 2015 .

[21]  K. Goi,et al.  Specific Antileukemic Activity of PD0332991, a CDK4/6 Inhibitor, against Philadelphia Chromosome–Positive Lymphoid Leukemia , 2015, Molecular Cancer Therapeutics.

[22]  S. Constantinescu,et al.  Infection Exposure is a Causal Factor in B-cell Precursor Acute Lymphoblastic Leukemia as a Result of Pax5-Inherited Susceptibility. , 2015, Cancer discovery.

[23]  Bert Vogelstein,et al.  The Path to Cancer --Three Strikes and You're Out. , 2015, The New England journal of medicine.

[24]  J. Downing,et al.  PAX5 is a tumor suppressor in mouse mutagenesis models of acute lymphoblastic leukemia. , 2015, Blood.

[25]  Jos Jonkers,et al.  CopywriteR: DNA copy number detection from off-target sequence data , 2015, Genome Biology.

[26]  D. Adams,et al.  CopywriteR: DNA copy number detection from off-target sequence data , 2015, Genome Biology.

[27]  S. Salzberg,et al.  StringTie enables improved reconstruction of a transcriptome from RNA-seq reads , 2015, Nature Biotechnology.

[28]  Rolf Larsson,et al.  DNA methylation-based subtype prediction for pediatric acute lymphoblastic leukemia , 2014, Clinical Epigenetics.

[29]  C. Mullighan The genomic landscape of acute lymphoblastic leukemia in children and young adults. , 2014, Hematology. American Society of Hematology. Education Program.

[30]  O. Kallioniemi,et al.  FusionCatcher – a tool for finding somatic fusion genes in paired-end RNA-sequencing data , 2014, bioRxiv.

[31]  G. McVean,et al.  Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications , 2014, Nature Genetics.

[32]  A. Borkhardt,et al.  Inherited susceptibility to pre B-ALL caused by germline transmission of PAX5 c.547G>A , 2014, Leukemia.

[33]  C. Eckert,et al.  Ras pathway mutations are prevalent in relapsed childhood acute lymphoblastic leukemia and confer sensitivity to MEK inhibition. , 2013, Blood.

[34]  Rohini Rau-Murthy,et al.  A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia , 2013, Nature Genetics.

[35]  M. Farrar,et al.  Pax5 loss imposes a reversible differentiation block in B-progenitor acute lymphoblastic leukemia , 2013, Genes & development.

[36]  A. Sivachenko,et al.  Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples , 2013, Nature Biotechnology.

[37]  Robert Huether,et al.  The genomic landscape of hypodiploid acute lymphoblastic leukemia , 2013, Nature Genetics.

[38]  E. Thiel,et al.  Adult patients with acute lymphoblastic leukemia and molecular failure display a poor prognosis and are candidates for stem cell transplantation and targeted therapies. , 2012, Blood.

[39]  Markus Jaritz,et al.  The B‐cell identity factor Pax5 regulates distinct transcriptional programmes in early and late B lymphopoiesis , 2012, The EMBO journal.

[40]  M. Farrar,et al.  Ebf1 or Pax5 haploinsufficiency synergizes with STAT5 activation to initiate acute lymphoblastic leukemia , 2011, The Journal of experimental medicine.

[41]  Nuria Lopez-Bigas,et al.  Gitools: Analysis and Visualisation of Genomic Data Using Interactive Heat-Maps , 2011, PloS one.

[42]  M. Muckenthaler,et al.  Gain-of-function mutations in interleukin-7 receptor-α (IL7R) in childhood acute lymphoblastic leukemias , 2011, The Journal of experimental medicine.

[43]  Süleyman Cenk Sahinalp,et al.  deFuse: An Algorithm for Gene Fusion Discovery in Tumor RNA-Seq Data , 2011, PLoS Comput. Biol..

[44]  B. Johansson,et al.  The frequency and prognostic impact of dic(9;20)(p13.2;q11.2) in childhood B-cell precursor acute lymphoblastic leukemia: results from the NOPHO ALL-2000 trial , 2011, Leukemia.

[45]  G. Weinstock,et al.  VarScan: variant detection in massively parallel sequencing of individual and pooled samples , 2009, Bioinform..

[46]  J. Downing,et al.  Failure of CDKN2A/B (INK4A/B-ARF)-mediated tumor suppression and resistance to targeted therapy in acute lymphoblastic leukemia induced by BCR-ABL. , 2008, Genes & development.

[47]  M. Busslinger,et al.  Pax5: the guardian of B cell identity and function , 2007, Nature Immunology.

[48]  Christopher B. Miller,et al.  Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia , 2007, Nature.

[49]  J. Mesirov,et al.  From the Cover: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005 .

[50]  Mel Greaves,et al.  Pre-natal origins of childhood leukemia. , 2003, Reviews in clinical and experimental hematology.

[51]  G. Schaffner,et al.  DNA sequence recognition by Pax proteins: bipartite structure of the paired domain and its binding site. , 1993, Genes & development.

[52]  A. Knudson Mutation and cancer: statistical study of retinoblastoma. , 1971, Proceedings of the National Academy of Sciences of the United States of America.