Maximum Correntropy Derivative-Free Robust Kalman Filter and Smoother

We consider the problem of robust estimation involving filtering and smoothing for nonlinear state space models which are disturbed by heavy-tailed impulsive noises. To deal with heavy-tailed noises and improve the robustness of the traditional nonlinear Gaussian Kalman filter and smoother, we propose in this work a general framework of robust filtering and smoothing, which adopts a new maximum correntropy criterion to replace the minimum mean square error for state estimation. To facilitate understanding, we present our robust framework in conjunction with the cubature Kalman filter and smoother. A half-quadratic optimization method is utilized to solve the formulated robust estimation problems, which leads to a new maximum correntropy derivative-free robust Kalman filter and smoother. Simulation results show that the proposed methods achieve a substantial performance improvement over the conventional and existing robust ones with slight computational time increase.

[1]  M. V. Kulikova,et al.  Estimation of maneuvering target in the presence of non-Gaussian noise: A coordinated turn case study , 2018, Signal Process..

[2]  Aleksandr Y. Aravkin,et al.  Sparse/robust estimation and Kalman smoothing with nonsmooth log-concave densities: modeling, computation, and theory , 2013, J. Mach. Learn. Res..

[3]  Naigang Cui,et al.  Maximum correntropy sparse Gauss–Hermite quadrature filter and its application in tracking ballistic missile , 2017 .

[4]  C. Karlgaard Nonlinear Regression Huber–Kalman Filtering and Fixed-Interval Smoothing , 2015 .

[5]  Michel Barlaud,et al.  Deterministic edge-preserving regularization in computed imaging , 1997, IEEE Trans. Image Process..

[6]  M. V. Kulikova,et al.  Square-root algorithms for maximum correntropy estimation of linear discrete-time systems in presence of non-Gaussian noise , 2016, Syst. Control. Lett..

[7]  Dan Simon,et al.  Kalman filtering based on the maximum correntropy criterion in the presence of non-Gaussian noise , 2016 .

[8]  Eduardo Mario Nebot,et al.  Approximate Inference in State-Space Models With Heavy-Tailed Noise , 2012, IEEE Transactions on Signal Processing.

[9]  Xi Liu,et al.  Extended Kalman filter under maximum correntropy criterion , 2016, 2016 International Joint Conference on Neural Networks (IJCNN).

[10]  Nanning Zheng,et al.  Convergence of a Fixed-Point Algorithm under Maximum Correntropy Criterion , 2015, IEEE Signal Processing Letters.

[11]  Fredrik Gustafsson,et al.  Some Relations Between Extended and Unscented Kalman Filters , 2012, IEEE Transactions on Signal Processing.

[12]  Shuicheng Yan,et al.  Correntropy based feature selection using binary projection , 2011, Pattern Recognit..

[13]  Xi Liu,et al.  > Replace This Line with Your Paper Identification Number (double-click Here to Edit) < , 2022 .

[14]  Hadi Sadoghi Yazdi,et al.  Kalman filtering based on the maximum correntropy criterion in the presence of non-Gaussian noise , 2016, 2016 Annual Conference on Information Science and Systems (CISS).

[15]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[16]  G. Pillonetto,et al.  An $\ell _{1}$-Laplace Robust Kalman Smoother , 2011, IEEE Transactions on Automatic Control.

[17]  S. Mitter,et al.  Robust Recursive Estimation in the Presence of Heavy-Tailed Observation Noise , 1994 .

[18]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[19]  Li Li,et al.  Robust Information Filter Based on Maximum Correntropy Criterion , 2016 .

[20]  Simo Särkkä,et al.  On Gaussian Optimal Smoothing of Non-Linear State Space Models , 2010, IEEE Transactions on Automatic Control.

[21]  Jwu-Sheng Hu,et al.  Second-Order Extended $H_{\infty}$ Filter for Nonlinear Discrete-Time Systems Using Quadratic Error Matrix Approximation , 2011, IEEE Transactions on Signal Processing.

[22]  Petar M. Djuric,et al.  Gaussian sum particle filtering , 2003, IEEE Trans. Signal Process..

[23]  Simon Haykin,et al.  Cubature Kalman smoothers , 2011, Autom..

[24]  Yuanxin Wu,et al.  A Numerical-Integration Perspective on Gaussian Filters , 2006, IEEE Transactions on Signal Processing.

[25]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[26]  Ran He,et al.  Robust Principal Component Analysis Based on Maximum Correntropy Criterion , 2011, IEEE Transactions on Image Processing.

[27]  José Carlos Príncipe,et al.  Adaptive background estimation using an information theoretic cost for hidden state estimation , 2011, The 2011 International Joint Conference on Neural Networks.

[28]  C. Striebel,et al.  On the maximum likelihood estimates for linear dynamic systems , 1965 .

[29]  Donald Geman,et al.  Constrained Restoration and the Recovery of Discontinuities , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[31]  Weifeng Liu,et al.  Correntropy: Properties and Applications in Non-Gaussian Signal Processing , 2007, IEEE Transactions on Signal Processing.

[32]  Aleksandr Y. Aravkin,et al.  Robust and Trend-Following Student's t Kalman Smoothers , 2013, SIAM J. Control. Optim..

[33]  LI X.RONG,et al.  Survey of maneuvering target tracking. Part I. Dynamic models , 2003 .

[34]  Bjarne A. Foss,et al.  Applying the unscented Kalman filter for nonlinear state estimation , 2008 .

[35]  Robert J. Elliott,et al.  Discrete-Time Nonlinear Filtering Algorithms Using Gauss–Hermite Quadrature , 2007, Proceedings of the IEEE.

[36]  J. Yeh,et al.  Real Analysis: Theory of Measure and Integration , 2006 .

[37]  Lubin Chang,et al.  Unified Form for the Robust Gaussian Information Filtering Based on M-Estimate , 2017, IEEE Signal Processing Letters.

[38]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[39]  Paul Honeine,et al.  Maximum correntropy unscented filter , 2016, Int. J. Syst. Sci..

[40]  R. Martin,et al.  Robust bayesian estimation for the linear model and robustifying the Kalman filter , 1977 .

[41]  Yonggang Zhang,et al.  Robust student’s t based nonlinear filter and smoother , 2016, IEEE Transactions on Aerospace and Electronic Systems.

[42]  Tieniu Tan,et al.  Half-Quadratic-Based Iterative Minimization for Robust Sparse Representation , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  Lennart Ljung,et al.  Generalized Kalman smoothing: Modeling and algorithms , 2016, Autom..

[44]  Ran He,et al.  Maximum Correntropy Criterion for Robust Face Recognition , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  Constantine Kotropoulos,et al.  Robust Multidimensional Scaling Using a Maximum Correntropy Criterion , 2017, IEEE Transactions on Signal Processing.

[46]  Yonggang Zhang,et al.  A Robust Gaussian Approximate Fixed-Interval Smoother for Nonlinear Systems With Heavy-Tailed Process and Measurement Noises , 2016, IEEE Signal Processing Letters.

[47]  José Carlos Príncipe,et al.  Hidden state estimation using the Correntropy Filter with fixed point update and adaptive kernel size , 2012, The 2012 International Joint Conference on Neural Networks (IJCNN).

[48]  I. Bilik,et al.  Maneuvering Target Tracking in the Presence of Glint using the Nonlinear Gaussian Mixture Kalman Filter , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[49]  Lamine Mili,et al.  Robust Kalman Filter Based on a Generalized Maximum-Likelihood-Type Estimator , 2010, IEEE Transactions on Signal Processing.

[50]  Thia Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software , 2001 .

[51]  Yonggang Zhang,et al.  Maximum correntropy unscented Kalman and information filters for non-Gaussian measurement noise , 2017, J. Frankl. Inst..

[52]  J. Dennis,et al.  Techniques for nonlinear least squares and robust regression , 1978 .