Choosing Subsets with Maximum Weighted Average

Given a set ofnreal values, each with a positive weight, we wish to find the subset ofn?kvalues having maximum weighted average. This is equivalent to the following form of parametric selection: givennobjects with values decreasing linearly with time, find the time at which then?kmaximum values add to zero. We show that these problems can be solved in timeO(n) (independent ofk). A generalization in which weights are allowed to be negative is NP-complete.

[1]  Bernd Gärtner A Subexponential Algorithm for Abstract Optimization Problems , 1992, FOCS.

[2]  Leonidas J. Guibas,et al.  The Centroid of Points with Approximate Weights , 1995, ESA.

[3]  Micha Sharir,et al.  Optimal Slope Selection Via Expanders , 1993, CCCG.

[4]  Leonidas J. Guibas,et al.  Diameter, width, closest line pair, and parametric searching , 1992, SCG '92.

[5]  James B. Orlin,et al.  Finding minimum cost to time ratio cycles with small integral transit times , 1993, Networks.

[6]  Nina Amenta,et al.  Helly theorems and generalized linear programming , 1993, SCG '93.

[7]  Richard M. Karp,et al.  Probabilistic recurrence relations , 1994, JACM.

[8]  Richard M. Karp,et al.  Parametric shortest path algorithms with an application to cyclic staffing , 1981, Discret. Appl. Math..

[9]  David M. Mount,et al.  A randomized algorithm for slope selection , 1992, Int. J. Comput. Geom. Appl..

[10]  Richard Cole,et al.  Slowing down sorting networks to obtain faster sorting algorithms , 2015, JACM.

[11]  David Eppstein Geometric Lower Bounds for Parametric Matroid Optimization , 1998, Discret. Comput. Geom..

[12]  Jirí Matousek,et al.  Randomized Optimal Algorithm for Slope Selection , 1991, Inf. Process. Lett..

[13]  S. Thomas McCormick,et al.  Two Strongly Polynomial Cut Cancelling Algorithms for Minimum Cost Network Flow , 1993, Discret. Appl. Math..

[14]  Raimund Seidel,et al.  Linear programming and convex hulls made easy , 1990, SCG '90.

[15]  Raymond E. Miller,et al.  Complexity of Computer Computations , 1972 .

[16]  Bernard Chazelle,et al.  Optimal Slope Selection Via Cuttings , 1994, CCCG.

[17]  Andrew V. Goldberg,et al.  Tight bounds on the number of minimum-mean cycle cancellations and related results , 1991, SODA '91.

[18]  Nina Amenta,et al.  Helly-type theorems and Generalized Linear Programming , 1994, Discret. Comput. Geom..

[19]  Nimrod Megiddo,et al.  Applying parallel computation algorithms in the design of serial algorithms , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[20]  Micha Sharir,et al.  A Subexponential Bound for Linear Programming , 1992, Symposium on Computational Geometry.

[21]  Jirí Matousek,et al.  Approximations and optimal geometric divide-and-conquer , 1991, STOC '91.

[22]  Kenneth L. Clarkson,et al.  A Las Vegas algorithm for linear programming when the dimension is small , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[23]  David Eppstein Geometric lower bounds for parametric matroid optimization , 1995, STOC '95.

[24]  Endre Szemerédi,et al.  An Optimal-Time Algorithm for Slope Selection , 1989, SIAM J. Comput..

[25]  William L. Steiger,et al.  Randomizing Optimal Geometric Algorithms , 1993, CCCG.

[26]  Richard M. Karp,et al.  A characterization of the minimum cycle mean in a digraph , 1978, Discret. Math..

[27]  Robert E. Tarjan,et al.  Faster parametric shortest path and minimum-balance algorithms , 1991, Networks.

[28]  Raimund Seidel,et al.  Small-dimensional linear programming and convex hulls made easy , 1991, Discret. Comput. Geom..

[29]  B. Gartner A subexponential algorithm for abstract optimization problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[30]  Micha Sharir,et al.  A subexponential bound for linear programming , 1992, SCG '92.

[31]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[32]  Endre Szemerédi,et al.  An upper bound on the number of planarK-sets , 1992, Discret. Comput. Geom..