Learning deep semantic segmentation network under multiple weakly-supervised constraints for cross-domain remote sensing image semantic segmentation

[1]  Lorenzo Bruzzone,et al.  Recent Advances in Domain Adaptation for the Classification of Remote Sensing Data , 2021, ArXiv.

[2]  Yansheng Li,et al.  Accurate cloud detection in high-resolution remote sensing imagery by weakly supervised deep learning , 2020 .

[3]  Yansheng Li,et al.  Error-Tolerant Deep Learning for Remote Sensing Image Scene Classification , 2020, IEEE Transactions on Cybernetics.

[4]  Fan Zhang,et al.  TreeUNet: Adaptive Tree convolutional neural networks for subdecimeter aerial image segmentation , 2019, ISPRS Journal of Photogrammetry and Remote Sensing.

[5]  Li Yan,et al.  Semi-supervised center-based discriminative adversarial learning for cross-domain scene-level land-cover classification of aerial images , 2019, ISPRS Journal of Photogrammetry and Remote Sensing.

[6]  Bo Du,et al.  Self-Ensembling Attention Networks: Addressing Domain Shift for Semantic Segmentation , 2019, AAAI.

[7]  Anis Koubaa,et al.  Unsupervised Domain Adaptation using Generative Adversarial Networks for Semantic Segmentation of Aerial Images , 2019, Remote. Sens..

[8]  Qiang Zhang,et al.  Domain Adaptation for Convolutional Neural Networks-Based Remote Sensing Scene Classification , 2019, IEEE Geoscience and Remote Sensing Letters.

[9]  Li Yan,et al.  Cross-Domain Distance Metric Learning Framework With Limited Target Samples for Scene Classification of Aerial Images , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Lanyu Shang,et al.  RiskSens: A Multi-view Learning Approach to Identifying Risky Traffic Locations in Intelligent Transportation Systems Using Social and Remote Sensing , 2018, 2018 IEEE International Conference on Big Data (Big Data).

[11]  Xin Huang,et al.  Deep networks under scene-level supervision for multi-class geospatial object detection from remote sensing images , 2018, ISPRS Journal of Photogrammetry and Remote Sensing.

[12]  M. Yang,et al.  Tea Garden Detection from High-Resolution Imagery Using a Scene-Based Framework , 2018, Photogrammetric Engineering & Remote Sensing.

[13]  Michael Ying Yang,et al.  UAVid: A semantic segmentation dataset for UAV imagery , 2018 .

[14]  B. V. Vijaya Kumar,et al.  Unsupervised Domain Adaptation for Semantic Segmentation via Class-Balanced Self-training , 2018, ECCV.

[15]  Michele Volpi,et al.  Deep multi-task learning for a geographically-regularized semantic segmentation of aerial images , 2018, ISPRS Journal of Photogrammetry and Remote Sensing.

[16]  Lu Yang,et al.  Semantic Segmentation for High Spatial Resolution Remote Sensing Images Based on Convolution Neural Network and Pyramid Pooling Module , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[17]  Gang Yu,et al.  BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation , 2018, ECCV.

[18]  Ming-Hsuan Yang,et al.  Learning to Adapt Structured Output Space for Semantic Segmentation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[19]  George Papandreou,et al.  Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation , 2018, ECCV.

[20]  Yongjun Zhang,et al.  Large-Scale Remote Sensing Image Retrieval by Deep Hashing Neural Networks , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Taesung Park,et al.  CyCADA: Cycle-Consistent Adversarial Domain Adaptation , 2017, ICML.

[22]  Léon Bottou,et al.  Wasserstein Generative Adversarial Networks , 2017, ICML.

[23]  Naif Alajlan,et al.  Domain Adaptation Network for Cross-Scene Classification , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Min Sun,et al.  No More Discrimination: Cross City Adaptation of Road Scene Segmenters , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[25]  Ping Tan,et al.  DualGAN: Unsupervised Dual Learning for Image-to-Image Translation , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[26]  Nataliia Kussul,et al.  Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data , 2017, IEEE Geoscience and Remote Sensing Letters.

[27]  Alexei A. Efros,et al.  Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[28]  Yun Fu,et al.  Image Cosegmentation via Saliency-Guided Constrained Clustering with Cosine Similarity , 2017, AAAI.

[29]  Xiaogang Wang,et al.  Pyramid Scene Parsing Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  Alexei A. Efros,et al.  Image-to-Image Translation with Conditional Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Vincent Dumoulin,et al.  Deconvolution and Checkerboard Artifacts , 2016 .

[32]  Jon Atli Benediktsson,et al.  Big Data for Remote Sensing: Challenges and Opportunities , 2016, Proceedings of the IEEE.

[33]  Bo Du,et al.  Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art , 2016, IEEE Geoscience and Remote Sensing Magazine.

[34]  Lorenzo Bruzzone,et al.  Domain Adaptation for the Classification of Remote Sensing Data: An Overview of Recent Advances , 2016, IEEE Geoscience and Remote Sensing Magazine.

[35]  Michael Kampffmeyer,et al.  Semantic Segmentation of Small Objects and Modeling of Uncertainty in Urban Remote Sensing Images Using Deep Convolutional Neural Networks , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[36]  Sebastian Ramos,et al.  The Cityscapes Dataset for Semantic Urban Scene Understanding , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  Bin Jiang,et al.  Geospatial Big Data Handling Theory and Methods: A Review and Research Challenges , 2015, ArXiv.

[38]  Albert Y. Zomaya,et al.  Remote sensing big data computing: Challenges and opportunities , 2015, Future Gener. Comput. Syst..

[39]  Fan Zhang,et al.  Deep Convolutional Neural Networks for Hyperspectral Image Classification , 2015, J. Sensors.

[40]  Nikolaos Doulamis,et al.  Deep supervised learning for hyperspectral data classification through convolutional neural networks , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[41]  Ying Yu,et al.  Accurate Urban Area Detection in Remote Sensing Images , 2015, IEEE Geoscience and Remote Sensing Letters.

[42]  Shanjun Mao,et al.  Spectral–spatial classification of hyperspectral images using deep convolutional neural networks , 2015 .

[43]  Konrad Schindler,et al.  Mapping of Agricultural Crops from Single High-Resolution Multispectral Images - Data-Driven Smoothing vs. Parcel-Based Smoothing , 2015, Remote. Sens..

[44]  Michael I. Jordan,et al.  Learning Transferable Features with Deep Adaptation Networks , 2015, ICML.

[45]  Markus Gerke,et al.  Use of the stair vision library within the ISPRS 2D semantic labeling benchmark (Vaihingen) , 2014 .

[46]  Trevor Darrell,et al.  Fully convolutional networks for semantic segmentation , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[47]  Aaron C. Courville,et al.  Generative adversarial networks , 2014, Commun. ACM.

[48]  Lorenzo Bruzzone,et al.  A Multilevel Context-Based System for Classification of Very High Spatial Resolution Images , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[49]  David Salesin,et al.  Image Analogies , 2001, SIGGRAPH.

[50]  Zhenzhong Chen,et al.  Superpixel-enhanced deep neural forest for remote sensing image semantic segmentation , 2020 .