O2-Sensing Neurons Control CO2 Response in C. elegans

Sensory behaviors are often flexible, allowing animals to generate context-appropriate responses to changing environmental conditions. To investigate the neural basis of behavioral flexibility, we examined the regulation of carbon dioxide (CO2) response in the nematode Caenorhabditis elegans. CO2 is a critical sensory cue for many animals, mediating responses to food, conspecifics, predators, and hosts (Scott, 2011; Buehlmann et al., 2012; Chaisson and Hallem, 2012). In C. elegans, CO2 response is regulated by the polymorphic neuropeptide receptor NPR-1: animals with the N2 allele of npr-1 avoid CO2, whereas animals with the Hawaiian (HW) allele or an npr-1 loss-of-function (lf) mutation appear virtually insensitive to CO2 (Hallem and Sternberg, 2008; McGrath et al., 2009). Here we show that ablating the oxygen (O2)-sensing URX neurons in npr-1(lf) mutants restores CO2 avoidance, suggesting that NPR-1 enables CO2 avoidance by inhibiting URX neurons. URX was previously shown to be activated by increases in ambient O2 (Persson et al., 2009; Zimmer et al., 2009; Busch et al., 2012). We find that, in npr-1(lf) mutants, O2-induced activation of URX inhibits CO2 avoidance. Moreover, both HW and npr-1(lf) animals avoid CO2 under low O2 conditions, when URX is inactive. Our results demonstrate that CO2 response is determined by the activity of O2-sensing neurons and suggest that O2-dependent regulation of CO2 avoidance is likely to be an ecologically relevant mechanism by which nematodes navigate gas gradients.

[1]  S. Brenner The genetics of Caenorhabditis elegans. , 1974, Genetics.

[2]  A. Miyawaki,et al.  Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Leonid Kruglyak,et al.  A Polymorphism in npr-1 Is a Behavioral Determinant of Pathogen Susceptibility in C. elegans , 2009, Science.

[4]  Cori Bargmann,et al.  Natural Variation in a Neuropeptide Y Receptor Homolog Modifies Social Behavior and Food Response in C. elegans , 1998, Cell.

[5]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[6]  Mario de Bono,et al.  A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans , 2008, Proceedings of the National Academy of Sciences.

[7]  Nan Li,et al.  Ultra-prolonged activation of CO2-sensing neurons disorients mosquitoes , 2011, Nature.

[8]  Markus Knaden,et al.  Path Integration Controls Nest-Plume Following in Desert Ants , 2012, Current Biology.

[9]  Mark A. Frye,et al.  Drosophila Tracks Carbon Dioxide in Flight , 2013, Current Biology.

[10]  M. Félix,et al.  Population dynamics and habitat sharing of natural populations of Caenorhabditis elegans and C. briggsae , 2012, BMC Biology.

[11]  Leonid Kruglyak,et al.  Catecholamine receptor polymorphisms affect decision-making in C. elegans , 2011, Nature.

[12]  N. Ringstad,et al.  A Single Gene Target of an ETS-Family Transcription Factor Determines Neuronal CO2-Chemosensitivity , 2012, PloS one.

[13]  Minmin Luo,et al.  Neural detection of gases—carbon dioxide, oxygen—in vertebrates and invertebrates , 2009, Current Opinion in Neurobiology.

[14]  E. Hallem,et al.  Chemosensory behaviors of parasites. , 2012, Trends in parasitology.

[15]  Stefan R. Henz,et al.  Receptor-type guanylate cyclase is required for carbon dioxide sensation by Caenorhabditis elegans , 2010, Proceedings of the National Academy of Sciences.

[16]  Mario de Bono,et al.  Experience-Dependent Modulation of C. elegans Behavior by Ambient Oxygen , 2005, Current Biology.

[17]  P. O’Farrell,et al.  Nitric Oxide Contributes to Behavioral, Cellular, and Developmental Responses to Low Oxygen in Drosophila , 1999, Cell.

[18]  N. Langford,et al.  Carbon Dioxide Poisoning , 2005, Toxicological reviews.

[19]  M. de Bono,et al.  Neuronal and molecular substrates for optimal foraging in Caenorhabditis elegans , 2011, Proceedings of the National Academy of Sciences.

[20]  Sreekanth H. Chalasani,et al.  Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators , 2009, Nature Methods.

[21]  Adrian L. Harris,et al.  Hypoxia — a key regulatory factor in tumour growth , 2002, Nature Reviews Cancer.

[22]  J. Bessereau,et al.  [C. elegans: of neurons and genes]. , 2003, Medecine sciences : M/S.

[23]  B. Basnyat The physiologic basis of high-altitude diseases. , 2005, Annals of internal medicine.

[24]  Evan Z. Macosko,et al.  Quantitative Mapping of a Digenic Behavioral Trait Implicates Globin Variation in C. elegans Sensory Behaviors , 2009, Neuron.

[25]  Hongtao Qin,et al.  The Caenorhabditis elegans AHR-1 transcription complex controls expression of soluble guanylate cyclase genes in the URX neurons and regulates aggregation behavior. , 2006, Developmental biology.

[26]  D. Morton Behavioral responses to hypoxia and hyperoxia in Drosophila larvae , 2011, Fly.

[27]  Kristin Scott Out of Thin Air: Sensory Detection of Oxygen and Carbon Dioxide , 2011, Neuron.

[28]  Cornelia I. Bargmann,et al.  Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue , 2004, Nature.

[29]  Y. Ohshima,et al.  The C. elegans che-1 gene encodes a zinc finger transcription factor required for specification of the ASE chemosensory neurons , 2003, Development.

[30]  Oliver Hobert,et al.  Neurogenesis in the nematode Caenorhabditis elegans. , 2010, WormBook : the online review of C. elegans biology.

[31]  Y. Iino,et al.  Reversal of Salt Preference Is Directed by the Insulin/PI3K and Gq/PKC Signaling in Caenorhabditis elegans , 2010, Genetics.

[32]  P. Sternberg,et al.  A Sensory Code for Host Seeking in Parasitic Nematodes , 2011, Current Biology.

[33]  E. Hallem,et al.  Differentiation of Carbon Dioxide-sensing Neurons in Caenorhabditis Elegans Requires the Ets-5 Transcription Factor a Novel Role for Ets Proteins in Gas Sensing , 2022 .

[34]  Paul W. Sternberg,et al.  Acute carbon dioxide avoidance in Caenorhabditis elegans , 2008, Proceedings of the National Academy of Sciences.

[35]  Sreekanth H. Chalasani,et al.  A Behavioral Switch: cGMP and PKC Signaling in Olfactory Neurons Reverses Odor Preference in C. elegans , 2008, Neuron.

[36]  Anandasankar Ray,et al.  Modification of CO2 avoidance behaviour in Drosophila by inhibitory odorants , 2009, Nature.

[37]  David J. Anderson,et al.  A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila , 2004, Nature.

[38]  S. Oda,et al.  Neuronal plasticity regulated by the insulin-like signaling pathway underlies salt chemotaxis learning in Caenorhabditis elegans. , 2011, Journal of neurophysiology.

[39]  M. D. Bono,et al.  Natural variation in a neural globin tunes oxygen sensing in wild Caenorhabditis elegans , 2009, Nature.

[40]  J. Satterlee,et al.  Specification of Thermosensory Neuron Fate in C. elegans Requires ttx-1, a Homolog of otd/Otx , 2001, Neuron.

[41]  P. Sternberg,et al.  Olfaction shapes host–parasite interactions in parasitic nematodes , 2012, Proceedings of the National Academy of Sciences.

[42]  Cori Bargmann,et al.  Odorant-selective genes and neurons mediate olfaction in C. elegans , 1993, Cell.

[43]  P. Vigne,et al.  Hypoxia modifies the feeding preferences of Drosophila. Consequences for diet dependent hypoxic survival , 2010, BMC Physiology.

[44]  Cornelia I Bargmann,et al.  A Distributed Chemosensory Circuit for Oxygen Preference in C. elegans , 2006, PLoS biology.

[45]  P. Sengupta,et al.  The belly rules the nose: feeding state-dependent modulation of peripheral chemosensory responses , 2013, Current Opinion in Neurobiology.

[46]  Mario de Bono,et al.  Tonic signaling from O2 sensors sets neural circuit activity and behavioral state , 2012, Nature Neuroscience.

[47]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[48]  Navin Pokala,et al.  Neurons Detect Increases and Decreases in Oxygen Levels Using Distinct Guanylate Cyclases , 2009, Neuron.

[49]  Evan Z. Macosko,et al.  A huband-spoke circuit drives pheromone attraction and social behaviour in C . elegans , 2009 .

[50]  M. Labouesse [Caenorhabditis elegans]. , 2003, Medecine sciences : M/S.

[51]  M. D. Bono,et al.  Soluble Guanylate Cyclases Act in Neurons Exposed to the Body Fluid to Promote C. elegans Aggregation Behavior , 2004, Current Biology.

[52]  Miriam B Goodman,et al.  Heat Avoidance Is Regulated by Transient Receptor Potential (TRP) Channels and a Neuropeptide Signaling Pathway in Caenorhabditis elegans , 2011, Genetics.

[53]  M. de Bono,et al.  Temperature, Oxygen, and Salt-Sensing Neurons in C. elegans Are Carbon Dioxide Sensors that Control Avoidance Behavior , 2011, Neuron.

[54]  P. Hotez,et al.  Hookworm larval infectivity, arrest and amphiparatenesis: the Caenorhabditis elegans Daf-c paradigm. , 1993, Parasitology today.

[55]  Evan Z. Macosko,et al.  A Hub-and-Spoke Circuit Drives Pheromone Attraction and Social Behavior in C. elegans , 2009, Nature.

[56]  Mario de Bono,et al.  Behavioral Motifs and Neural Pathways Coordinating O2 Responses and Aggregation in C. elegans , 2006, Current Biology.

[57]  W. Schafer,et al.  The Insulin/PI 3-Kinase Pathway Regulates Salt Chemotaxis Learning in Caenorhabditis elegans , 2006, Neuron.