Improving temperature estimates derived from Mg/Ca of planktonic foraminifera using X‐ray computed tomography–based dissolution index, XDX

[1] Temperatures derived from Mg/Ca ratios of the calcite tests of planktonic foraminifera are distorted when samples are partially dissolved, and methods are required to quantify this source of inaccuracy. Here we compare a dissolution index (XDX), based on X-ray computed tomography scans, to Mg/Ca of four species of foraminifera (G. ruber (white), G. sacculifer (without sac), N. dutertrei, and P. obliquiloculata) from core top sediments from the tropical Pacific, Atlantic, and western Indian Ocean. Deepwater calcite saturation values (Δ[CO32−]) at the sites ranged from 55 to −23 μmol/kg. An estimate of ΔMg/Ca (reduction in Mg/Ca due to dissolution) was made for each sample. ΔMg/Ca decreased linearly from deepwater Δ[CO32−] values of between 10 (±4) and 15 (±5) μmol/kg. These values are minimum estimates of the threshold below which Mg/Ca is affected by dissolution, as they are limited by assumptions made in calculating ΔMg/Ca. Sensitivity of Mg/Ca to Δ[CO32−] was greatest for G. ruber, where Mg/Ca decreased by 0.102 (±0.036) mmol/mol per μmol/kg. Sensitivity was similar for G. sacculifer (0.047 ± 0.015 mmol/mol per μmol/kg), N. dutertrei (0.037 ± 0.010 mmol/mol per μmol/kg), and P. obliquiloculata (0.040 ± 0.008 mmol/mol per μmol/kg). Sensitivity was similar at all sites for each species, excepting an apparently greater response for N. dutertrei from the Caribbean compared to other sites. Calibrations between XDX and ΔMg/Ca provide a means to estimate dissolution bias on Mg/Ca. Poor correlation between XDX and δ18O suggests that, for the small sample size typical for analysis, variability in initial δ18O overwhelms dissolution effects.

[1]  M. Schulz,et al.  Inside story: An X-ray computed tomography method for assessing dissolution in the tests of planktonic foraminifera , 2010 .

[2]  R. Leckie,et al.  Early history of the Western Pacific Warm Pool during the middle to late Miocene (~ 13.2–5.8 Ma): Role of sea-level change and implications for equatorial circulation , 2009 .

[3]  Wilco Hazeleger,et al.  Western Europe is warming much faster than expected , 2008, 0806.0715.

[4]  Franck Bassinot,et al.  Dissolution effects on the crystallography and Mg/Ca content of planktonic foraminifera Globorotalia tumida (Rotaliina) revealed by X‐ray diffractometry , 2007 .

[5]  H. Elderfield,et al.  Benthic foraminiferal B/Ca ratios reflect deep water carbonate saturation state , 2007 .

[6]  W. Broecker,et al.  Radiocarbon age offsets of foraminifera resulting from differential dissolution and fragmentation within the sedimentary bioturbated zone , 2007 .

[7]  Jason Day,et al.  Preferential dissolution of benthic foraminiferal calcite during laboratory reductive cleaning , 2007 .

[8]  R. Schiebel,et al.  Planktic foraminiferal dissolution in the twilight zone , 2007 .

[9]  R. Francois,et al.  Tracing deep‐sea calcite dissolution: Agreement between the Globorotalia menardii fragmentation index and elemental ratios (Mg/Ca and Mg/Sr) in planktonic foraminifers , 2006 .

[10]  G. Eshel,et al.  Glacial deep water carbonate chemistry inferred from foraminiferal Mg/Ca: A case study from the western tropical Atlantic , 2006 .

[11]  D. Garbe‐Schönberg,et al.  Assessing the effect of dissolution on planktonic foraminiferal Mg/Ca ratios: Evidence from Caribbean core tops , 2006 .

[12]  Gavin A. Schmidt,et al.  Global gridded data set of the oxygen isotopic composition in seawater , 2006 .

[13]  Nicholas J Shackleton,et al.  Paleoclimate history of Galapagos surface waters over the last 135,000 yr , 2006 .

[14]  A. Mix Running hot and cold in the eastern equatorial Pacific , 2006 .

[15]  S. Eggins,et al.  Characterization of Mg/Ca distributions in planktonic foraminifera species by electron microprobe mapping , 2005 .

[16]  Jason Day,et al.  Determination of multiple element/calcium ratios in foraminiferal calcite by quadrupole ICP‐MS , 2005 .

[17]  J. Lynch‐Stieglitz,et al.  Deep Pacific CaCO3 compensation and glacial–interglacial atmospheric CO2 , 2005 .

[18]  Richard A. Feely,et al.  A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP) , 2004 .

[19]  M. Gehlen,et al.  Crystallinity of foraminifera shells: A proxy to reconstruct past bottom water CO3= changes? , 2004 .

[20]  G. Wefer,et al.  Temperature:δ18O relationships of planktonic foraminifera collected from surface waters , 2003 .

[21]  H. Elderfield,et al.  A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry , 2003 .

[22]  Elizabeth C. Kent,et al.  Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century , 2003 .

[23]  Henry Elderfield,et al.  Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series , 2003 .

[24]  R. Schiebel Planktic foraminiferal sedimentation and the marine calcite budget , 2002 .

[25]  G. P. Lohmann,et al.  Accurate estimation of sea surface temperatures using dissolution‐corrected calibrations for Mg/Ca paleothermometry , 2002 .

[26]  S. Barker,et al.  Foraminiferal Calcification Response to Glacial-Interglacial Changes in Atmospheric CO2 , 2002, Science.

[27]  D. Lea,et al.  Core top calibration of Mg/Ca in tropical foraminifera: Refining paleotemperature estimation , 2002 .

[28]  F. Sierro,et al.  Late Pleistocene evolution of the ocean’s carbonate system , 2001 .

[29]  H. Elderfield,et al.  Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios , 2000, Nature.

[30]  A. Ravelo,et al.  RECONSTRUCTIONS OF UPWELLING, PRODUCTIVITY, AND PHOTIC ZONE DEPTH IN THE EASTERN EQUATORIAL PACIFIC OCEAN USING PLANKTONIC FORAMINIFERAL STABLE ISOTOPES AND ABUNDANCES , 2000 .

[31]  G. P. Lohmann,et al.  Incorporation and preservation of Mg in Globigerinoides sacculifer: implications for reconstructing the temperature and 18O/16O of seawater , 2000 .

[32]  D. Lea,et al.  Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing , 1999 .

[33]  D. Lea,et al.  Glacial–interglacial changes in Subantarctic sea surface temperature and δ18O-water using foraminiferal Mg , 1999 .

[34]  Sasov,et al.  Desktop X‐ray microscopy and microtomography , 1998, Journal of microscopy.

[35]  S. Emerson,et al.  Foraminiferal magnesium in Globeriginoides sacculifer as a paleotemperature proxy , 1998 .

[36]  E. Boyle,et al.  Temperature control on the incorporation of magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from Little Bahama Bank: Prospects for thermocline paleoceanography , 1997 .

[37]  H. Elderfield,et al.  Variations in Mg/Ca and Sr/Ca ratios of planktonic foraminifera caused by postdepositional dissolution: Evidence of shallow Mg‐dependent dissolution , 1996 .

[38]  C. Hemleben,et al.  Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures , 1996 .

[39]  D. Nürnberg MAGNESIUM IN TESTS OF NEOGLOBOQUADRINA PACHYDERMA SINISTRAL FROM HIGH NORTHERN AND SOUTHERN LATITUDES , 1995 .

[40]  G. P. Lohmann A model for variation in the chemistry of planktonic foraminifera due to secondary calcification and selective dissolution , 1995 .

[41]  L. Keigwin,et al.  Depth profiles of δ13C in bottom water and core top C. wuellerstorfi on the Ontong Java Plateau and Emperor Seamounts , 1994 .

[42]  R. Fairbanks,et al.  Oxygen Isotopic Composition of Multiple Species of Planktonic Foraminifera: Recorders of the Modern Photic Zone Temperature Gradient , 1992 .

[43]  N. Shackleton,et al.  Carbonate Dissolution Fluctuations in the Western Equatorial Pacific During the Late Quaternary , 1992 .

[44]  D. Caron,et al.  Effects of gametogenesis on test structure and dissolution of some spinose planktonic foraminifera and implications for test preservation , 1990 .

[45]  Guoping Wu,et al.  Planktonic foraminifera: Differential dissolution and the Quaternary stable isotope Record in the west equatorial Pacific , 1989 .

[46]  Christoph Hemleben,et al.  Modern Planktonic Foraminifera , 1988, Springer New York.

[47]  L. M. Walter,et al.  The dissolution kinetics of shallow marine carbonates in seawater: A laboratory study , 1985 .

[48]  L. Feldkamp,et al.  Practical cone-beam algorithm , 1984 .

[49]  R. Thunell,et al.  Seasonal changes in the isotopic composition of planktonic foraminifera collected in Panama Basin sediment traps , 1983 .

[50]  P. Blanc,et al.  Oxygen-18 Enrichment of Planktonic Foraminifera Due to Gametogenic Calcification Below the Euphotic Zone , 1981, Science.

[51]  R. Keir,et al.  Calcite Dissolution: An in situ Study in the Panama Basin. , 1981, Science.

[52]  T. Ku,et al.  A Method for Quantitative Evaluation of Carbonate Dissolution in Deep-Sea Sediments and its Application to Paleoceanographic Reconstruction , 1978, Quaternary Research.

[53]  N. Shackleton,et al.  Oxygen and carbon isotope studies in recent foraminifera from the southwest Indian ocean , 1978 .

[54]  DOUGLAS F. Williams,et al.  The Early Nonstructural Chemical Diagenesis of Foraminiferal Calcite , 1977 .

[55]  W. Berger Deep-sea carbonate and the deglaciation preservation spike in pteropods and foraminifera , 1977, Nature.

[56]  R. Thunell Optimum indices of calcium carbonate dissolution, in deep-sea sediments , 1976 .

[57]  S. Savin,et al.  Stable Isotope and Magnesium Geochemistry of Recent Planktonic Foraminifera from the South Pacific , 1973 .

[58]  T. Oba Biostratigraphy and Isotopic Paleotemperature of some Deep-Sea Cores from the Indian Ocean , 1969 .

[59]  W. Berger Planktonic Foraminifera: selective solution and paleoclimatic interpretation , 1968 .

[60]  James I. Jones Significance of the distribution of planktonic foraminifera in the equatorial Atlantic undercurrent , 1967 .

[61]  S. Levitus,et al.  World ocean atlas 2009 , 2010 .

[62]  T. Bickert,et al.  Depth habitats and seasonal distributions of recent planktic foraminifers in the Canary Islands region (29°N) based on oxygen isotopes , 2009 .

[63]  A. Mix,et al.  Alkenone paleothermometry: Biological lessons from marine sediment records off western South America , 2006 .

[64]  I. Wilke THE INFLUENCE OF SEASONAL DISTRIBUTION PATTERNS, ECOLOGICAL PREFERENCES AND CALCIFICATION PROCESSES ON THE INCORPORATION OF STABLE OXYGEN AND CARBON ISOTOPES IN PLANKTIC FORAMINIFERAL CALCITE SHELLS , 2005 .

[65]  S. Villiers Optimum growth conditions as opposed to calcite saturation as a control on the calcification rate and shell-weight of marine foraminifera , 2004 .

[66]  U. Bleil Report and preliminary results of Meteor Cruise 38/2 Recife - Las Palmas, 4.3.-14.4.1997. , 1997 .

[67]  Guoping Wu,et al.  Pleistocene δ18O records from Ontong-Java Plateau: Effects of winnowing and dissolution , 1991 .

[68]  A. Bé Gametogenic calcification in a spinose planktonic foraminifer, Globigerinoides sacculifer (Brady) , 1980 .

[69]  大場 忠道 Biostratigraphy and isotopic paleotemperature of some deep-sea cores from the Indian Ocean , 1969 .