Approximate maximum likelihood estimation using data-cloning ABC
暂无分享,去创建一个
[1] J. Møller. Discussion on the paper by Feranhead and Prangle , 2012 .
[2] A. Doucet,et al. Particle Markov chain Monte Carlo methods , 2010 .
[3] Subhash R. Lele,et al. Estimability and Likelihood Inference for Generalized Linear Mixed Models Using Data Cloning , 2010 .
[4] Mohsen Mohammadzadeh,et al. A data cloning algorithm for computing maximum likelihood estimates in spatial generalized linear mixed models , 2011, Comput. Stat. Data Anal..
[5] Darren J Wilkinson,et al. Likelihood free inference for Markov processes: a comparison , 2014, Statistical applications in genetics and molecular biology.
[6] Andrew Gelman,et al. Handbook of Markov Chain Monte Carlo , 2011 .
[7] P. Fearnhead,et al. Exact and computationally efficient likelihood‐based estimation for discretely observed diffusion processes (with discussion) , 2006 .
[8] Christian P. Robert,et al. Reparameterization strategies for hidden Markov models and Bayesian approaches to maximum likelihood estimation , 1998, Stat. Comput..
[9] H. Haario,et al. An adaptive Metropolis algorithm , 2001 .
[10] Dennis Prangle,et al. Adapting the ABC distance function , 2015, 1507.00874.
[11] P. Donnelly,et al. Inferring coalescence times from DNA sequence data. , 1997, Genetics.
[12] Susanne Ditlevsen,et al. Introduction to stochastic models in biology. , 2013 .
[13] Eric Moulines,et al. Inference in hidden Markov models , 2010, Springer series in statistics.
[14] Paul Fearnhead,et al. Constructing summary statistics for approximate Bayesian computation: semi‐automatic approximate Bayesian computation , 2012 .
[15] P. Giordani,et al. Adaptive Independent Metropolis–Hastings by Fast Estimation of Mixtures of Normals , 2008, 0801.1864.
[16] David Welch,et al. Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.
[17] Jean-Michel Marin,et al. Approximate Bayesian computational methods , 2011, Statistics and Computing.
[18] S. J. Koopman. Discussion of `Particle Markov chain Monte Carlo methods – C. Andrieu, A. Doucet and R. Holenstein’ [Review of: Particle Markov chain Monte Carlo methods] , 2010 .
[19] D. Balding,et al. Approximate Bayesian computation in population genetics. , 2002, Genetics.
[20] G. D. Rayner,et al. Numerical maximum likelihood estimation for the g-and-k and generalized g-and-h distributions , 2002, Stat. Comput..
[21] M. Feldman,et al. Population growth of human Y chromosomes: a study of Y chromosome microsatellites. , 1999, Molecular biology and evolution.
[22] Sophie Donnet,et al. Bayesian Analysis of Growth Curves Using Mixed Models Defined by Stochastic Differential Equations , 2010, Biometrics.
[23] Christiane Fuchs,et al. Inference for Diffusion Processes , 2013 .
[24] Brian Dennis,et al. Data cloning: easy maximum likelihood estimation for complex ecological models using Bayesian Markov chain Monte Carlo methods. , 2007, Ecology letters.
[25] M. Li,et al. Particle Markov chain Monte Carlo methods , 2015 .
[26] Nicholas G. Polson,et al. MCMC maximum likelihood for latent state models , 2007 .
[27] Simon J. Godsill,et al. Marginal maximum a posteriori estimation using Markov chain Monte Carlo , 2002, Stat. Comput..
[28] R. Plevin,et al. Approximate Bayesian Computation in Evolution and Ecology , 2011 .
[29] Paul Marjoram,et al. Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[30] Umberto Picchini. Inference for SDE Models via Approximate Bayesian Computation , 2012, 1204.5459.
[31] Christiane Fuchs,et al. Inference for Diffusion Processes: With Applications in Life Sciences , 2013 .
[32] Haikady N. Nagaraja,et al. Inference in Hidden Markov Models , 2006, Technometrics.
[33] S. Sisson,et al. A comparative review of dimension reduction methods in approximate Bayesian computation , 2012, 1202.3819.
[34] Umberto Picchini. abc-sde: A MATLAB toolbox for approximate Bayesian computation (ABC) in stochastic differential equation models , 2013 .
[35] Adam M. Johansen,et al. A simple approach to maximum intractable likelihood estimation , 2013 .
[36] David Allingham,et al. Bayesian estimation of quantile distributions , 2009, Stat. Comput..
[37] Brunero Liseo,et al. Approximate Integrated Likelihood via ABC methods , 2014, 1403.0387.
[38] Syed Shahadat Hossain,et al. Numerical Maximum Likelihood Estimation for the g-and-k Distribution Using Ranked Set Sample , 2010 .