Approximate maximum likelihood estimation using data-cloning ABC

A maximum likelihood methodology for a general class of models is presented, using an approximate Bayesian computation (ABC) approach. The typical target of ABC methods is models with intractable likelihoods, and we combine an ABC-MCMC sampler with so-called "data cloning" for maximum likelihood estimation. Accuracy of ABC methods relies on the use of a small threshold value for comparing simulations from the model and observed data. The proposed methodology shows how to use large threshold values, while the number of data-clones is increased to ease convergence towards an approximate maximum likelihood estimate. We show how to exploit the methodology to reduce the number of iterations of a standard ABC-MCMC algorithm and therefore reduce the computational effort, while obtaining reasonable point estimates. Simulation studies show the good performance of our approach on models with intractable likelihoods such as g -and- k distributions, stochastic differential equations and state-space models.

[1]  J. Møller Discussion on the paper by Feranhead and Prangle , 2012 .

[2]  A. Doucet,et al.  Particle Markov chain Monte Carlo methods , 2010 .

[3]  Subhash R. Lele,et al.  Estimability and Likelihood Inference for Generalized Linear Mixed Models Using Data Cloning , 2010 .

[4]  Mohsen Mohammadzadeh,et al.  A data cloning algorithm for computing maximum likelihood estimates in spatial generalized linear mixed models , 2011, Comput. Stat. Data Anal..

[5]  Darren J Wilkinson,et al.  Likelihood free inference for Markov processes: a comparison , 2014, Statistical applications in genetics and molecular biology.

[6]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[7]  P. Fearnhead,et al.  Exact and computationally efficient likelihood‐based estimation for discretely observed diffusion processes (with discussion) , 2006 .

[8]  Christian P. Robert,et al.  Reparameterization strategies for hidden Markov models and Bayesian approaches to maximum likelihood estimation , 1998, Stat. Comput..

[9]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[10]  Dennis Prangle,et al.  Adapting the ABC distance function , 2015, 1507.00874.

[11]  P. Donnelly,et al.  Inferring coalescence times from DNA sequence data. , 1997, Genetics.

[12]  Susanne Ditlevsen,et al.  Introduction to stochastic models in biology. , 2013 .

[13]  Eric Moulines,et al.  Inference in hidden Markov models , 2010, Springer series in statistics.

[14]  Paul Fearnhead,et al.  Constructing summary statistics for approximate Bayesian computation: semi‐automatic approximate Bayesian computation , 2012 .

[15]  P. Giordani,et al.  Adaptive Independent Metropolis–Hastings by Fast Estimation of Mixtures of Normals , 2008, 0801.1864.

[16]  David Welch,et al.  Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.

[17]  Jean-Michel Marin,et al.  Approximate Bayesian computational methods , 2011, Statistics and Computing.

[18]  S. J. Koopman Discussion of `Particle Markov chain Monte Carlo methods – C. Andrieu, A. Doucet and R. Holenstein’ [Review of: Particle Markov chain Monte Carlo methods] , 2010 .

[19]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[20]  G. D. Rayner,et al.  Numerical maximum likelihood estimation for the g-and-k and generalized g-and-h distributions , 2002, Stat. Comput..

[21]  M. Feldman,et al.  Population growth of human Y chromosomes: a study of Y chromosome microsatellites. , 1999, Molecular biology and evolution.

[22]  Sophie Donnet,et al.  Bayesian Analysis of Growth Curves Using Mixed Models Defined by Stochastic Differential Equations , 2010, Biometrics.

[23]  Christiane Fuchs,et al.  Inference for Diffusion Processes , 2013 .

[24]  Brian Dennis,et al.  Data cloning: easy maximum likelihood estimation for complex ecological models using Bayesian Markov chain Monte Carlo methods. , 2007, Ecology letters.

[25]  M. Li,et al.  Particle Markov chain Monte Carlo methods , 2015 .

[26]  Nicholas G. Polson,et al.  MCMC maximum likelihood for latent state models , 2007 .

[27]  Simon J. Godsill,et al.  Marginal maximum a posteriori estimation using Markov chain Monte Carlo , 2002, Stat. Comput..

[28]  R. Plevin,et al.  Approximate Bayesian Computation in Evolution and Ecology , 2011 .

[29]  Paul Marjoram,et al.  Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Umberto Picchini Inference for SDE Models via Approximate Bayesian Computation , 2012, 1204.5459.

[31]  Christiane Fuchs,et al.  Inference for Diffusion Processes: With Applications in Life Sciences , 2013 .

[32]  Haikady N. Nagaraja,et al.  Inference in Hidden Markov Models , 2006, Technometrics.

[33]  S. Sisson,et al.  A comparative review of dimension reduction methods in approximate Bayesian computation , 2012, 1202.3819.

[34]  Umberto Picchini abc-sde: A MATLAB toolbox for approximate Bayesian computation (ABC) in stochastic differential equation models , 2013 .

[35]  Adam M. Johansen,et al.  A simple approach to maximum intractable likelihood estimation , 2013 .

[36]  David Allingham,et al.  Bayesian estimation of quantile distributions , 2009, Stat. Comput..

[37]  Brunero Liseo,et al.  Approximate Integrated Likelihood via ABC methods , 2014, 1403.0387.

[38]  Syed Shahadat Hossain,et al.  Numerical Maximum Likelihood Estimation for the g-and-k Distribution Using Ranked Set Sample , 2010 .