A comprehensive review on material selection for polymer matrix composites subjected to impact load

Abstract Polymer matrix composites (PMC) are extensively been used in many engineering applications. Various natural fibers have emerged as potential replacements to synthetic fibers as reinforcing materials composites owing to their fairly better mechanical properties, low cost, environment friendliness and biodegradability. Selection of appropriate constituents of composites for a particular application is a tedious task for a designer/engineer. Impact loading has emerged as the serious threat for the composites used in structural or secondary structural application and demands the usage of appropriate fiber and matrix combination to enhance the energy absorption and mitigate the failure. The objective of the present review is to explore the composite with various fiber and matrix combination used for impact applications, identify the gap in the literature and suggest the potential naturally available fiber and matrix combination of composites for future work in the field of impact loading. The novelty of the present study lies in exploring the combination of naturally available fiber and matrix combination which can help in better energy absorption and mitigate the failure when subjected to impact loading. In addition, the application of multi attributes decision making (MADM) tools is demonstrated for selection of fiber and matrix materials which can serve as a benchmark study for the researchers in future.

[1]  A. Khalina,et al.  Development of sugar palm yarn/glass fibre reinforced unsaturated polyester hybrid composites , 2018 .

[2]  Timon Rabczuk,et al.  Key Parameters for Fracture Toughness of Particle/Polymer Nanocomposites; Sensitivity Analysis via XFEM Modeling Approach , 2018, Proceedings of the 7th International Conference on Fracture Fatigue and Wear.

[3]  C. Zhang,et al.  Finite element modeling of damage development in cross-ply composite laminates subjected to low velocity impact , 2017 .

[4]  C. Plummer,et al.  Polymer Matrix Composites: Matrices and Processing , 2001 .

[5]  C. Santulli,et al.  Mechanical and thermal characterization of epoxy composites reinforced with random and quasi-unidirectional untreated Phormium tenax leaf fibers , 2010 .

[6]  K. K. Singh,et al.  Impact damage on fibre-reinforced polymer matrix composite – A review , 2014 .

[7]  S. Dey,et al.  Effect of oblique angle on low velocity impact response of delaminated composite conical shells , 2014 .

[8]  K. Maniya,et al.  A selection of material using a novel type decision-making method: Preference selection index method , 2010 .

[9]  M. S. Sivakumar,et al.  Low Velocity Impact Behavior of SiC/PU/GFRP Laminates , 2016 .

[10]  Faris M. AL-Oqla,et al.  Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry , 2014 .

[11]  Martin Močilan,et al.  Finite Element Modelling of High Velocity Impact on Plate Structures , 2016 .

[12]  Sunil Kumar Singal,et al.  Penstock material selection in small hydropower plants using MADM methods , 2015 .

[13]  Luigi Sorrentino,et al.  Drop-weight impact behaviour of woven hybrid basalt–carbon/epoxy composites , 2014 .

[14]  M. S. Yong,et al.  Low velocity impact performance of stitched flax/epoxy composite laminates , 2017 .

[15]  P. Wambua,et al.  Natural fibres: can they replace glass in fibre reinforced plastics? , 2001 .

[16]  S. Abrate Impact on Laminated Composite Materials , 1991 .

[17]  P. Gaudenzi,et al.  Low-velocity impact behaviour of hemp fibre reinforced bio-based epoxy laminates , 2016 .

[18]  D. Coker,et al.  Experimental and computational study of the damage process in CFRP composite beams under low-velocity impact , 2017 .

[19]  R. Kozłowski,et al.  Flammability and fire resistance of composites reinforced by natural fibers , 2008 .

[20]  Hazem Ali Attia,et al.  Integrated Fuzzy (GMM) -TOPSIS Model for Best Design Concept and Material Selection Process , 2013 .

[21]  N. K. Naik,et al.  Ballistic impact performance of composite targets , 2013 .

[22]  Ru-Min Wang,et al.  3 – Matrix materials , 2011 .

[23]  M. Ansari,et al.  Impact behaviour of GFRP and Kevlar/epoxy sandwich composite plate: Experimental and FE analyses , 2017 .

[24]  Kamran Behdinan,et al.  Numerical simulation of normal and oblique ballistic impact on ceramic composite armours , 2004 .

[25]  Yong Peng,et al.  A hybrid multi-objective optimization approach for energy-absorbing structures in train collisions , 2019, Inf. Sci..

[26]  Mohammad Jawaid,et al.  Impact behaviour of hybrid composites for structural applications: a review , 2018 .

[27]  M. Rong,et al.  The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites , 2001 .

[28]  P. Gaudenzi,et al.  Analytical modelling of high-velocity impacts on thin woven fabric composite targets , 2015 .

[29]  N. Bhatnagar,et al.  Low velocity impact response of 2D and 3D Kevlar/polypropylene composites , 2016 .

[30]  M. Al-Maadeed,et al.  Recycled polymers in natural fibre-reinforced polymer composites , 2014 .

[31]  Abbas S. Milani,et al.  A Combined Finite Element-Multiple Criteria Optimization Approach for Materials Selection of Gas Turbine Components , 2012 .

[33]  Sergio Neves Monteiro,et al.  Natural-fiber polymer-matrix composites: Cheaper, tougher, and environmentally friendly , 2009 .

[34]  P. Hazell,et al.  Impact behaviour of pultruded GFRP composites under low-velocity impact loading , 2017 .

[35]  K. Jagtap,et al.  Finite Element Simulation of Low Velocity Impact Damage in Composite Laminates , 2017 .

[36]  Mohammad Jawaid,et al.  A Review on Natural Fiber Reinforced Polymer Composite and Its Applications , 2015 .

[37]  Xiaohu Yao,et al.  Delamination prediction in composite laminates under low-velocity impact , 2015 .

[38]  V. Patel,et al.  Physico-mechanical properties of sustainable Sagwan-Teak Wood Flour/Polyester Composites with/without gum rosin , 2017 .

[39]  H. Judawisastra,et al.  Water absorption and tensile strength degradation of Petung bamboo (Dendrocalamus asper) fiber—reinforced polymeric composites , 2017 .

[40]  L. Anojkumar,et al.  Comparative analysis of MCDM methods for pipe material selection in sugar industry , 2014, Expert Syst. Appl..

[41]  Y. Xie,et al.  Improving cracking and drying shrinkage properties of cement mortar by adding chemically treated luffa fibres , 2014 .

[42]  N. Bhatnagar,et al.  Low velocity impact response of 3D angle-interlock Kevlar/basalt reinforced polypropylene composites , 2016 .

[43]  V. Patel,et al.  Physico-mechanical and wear properties of novel sustainable sour-weed fiber reinforced polyester composites , 2018 .

[44]  Michael R. Lovell,et al.  Material and process selection in product design using decision-making technique (AHP) , 2012 .

[45]  Q. Zhang,et al.  Preparation and properties of banana fiber-reinforced composites based on high density polyethylene (HDPE)/Nylon-6 blends. , 2009, Bioresource technology.

[46]  B. Lee,et al.  Penetration Failure Mechanisms of Armor-Grade Fiber Composites under Impact , 2001 .

[47]  M. K. Rathod,et al.  A methodological concept for phase change material selection based on multiple criteria decision analysis with and without fuzzy environment , 2011 .

[48]  H. Anuar,et al.  Improvement in mechanical properties of reinforced thermoplastic elastomer composite with kenaf bast fibre , 2011 .

[49]  In Lee,et al.  Composite damage model based on continuum damage mechanics and low velocity impact analysis of composite plates , 2013 .

[50]  M. Ansari,et al.  Impact behavior of FRP composite plate under low to hyper velocity impact , 2016 .

[51]  Zhifeng Liu,et al.  Materials selection for environmentally conscious design via a proposed life cycle environmental performance index , 2009 .

[52]  M. Afendi,et al.  Low-velocity impact responses of Napier fibre/polyester composites , 2016 .

[53]  Z. Fawaz,et al.  Numerical simulation correlating the low velocity impact behaviour of flax/epoxy laminates , 2019, Composites Part A: Applied Science and Manufacturing.

[54]  S. Joshi,et al.  Palliatives for Low Velocity Impact Damage in Composite Laminates , 2017 .

[55]  S. M. Sapuan,et al.  A knowledge-based system for materials selection in mechanical engineering design , 2001 .

[56]  P. Hazell,et al.  Impact behaviour of Dyneema® fabric-reinforced composites with different resin matrices , 2017 .

[57]  M. John,et al.  Recent Developments in Chemical Modification and Characterization of Natural Fiber-Reinforced Composites , 2008 .

[58]  V. Belton A comparison of the analytic hierarchy process and a simple multi-attribute value function , 1986 .

[59]  Yunhai Ma,et al.  Mineral fibre reinforced friction composites: effect of rockwool fibre on mechanical and tribological behaviour , 2018, Materials Research Express.

[60]  Yusuf Tansel İç,et al.  An experimental design approach using TOPSIS method for the selection of computer-integrated manufacturing technologies , 2012 .

[61]  Prasenjit Chatterjee,et al.  Selection of materials using compromise ranking and outranking methods , 2009 .

[62]  R. Dungani,et al.  Incorporation of coconut shell based nanoparticles in kenaf/coconut fibres reinforced vinyl ester composites , 2017 .

[63]  A. Bahramian,et al.  High velocity impact behavior of Kevlar/rubber and Kevlar/epoxy composites: A comparative study , 2019, Composite Structures.

[64]  B. Yogesha,et al.  Applications of Natural Fibers and Its Composites: An Overview , 2016 .

[65]  João Paulo Davim,et al.  A decision-making framework model for material selection using a combined multiple attribute decision-making method , 2008 .

[66]  S. Vinodh,et al.  Application of fuzzy VIKOR and environmental impact analysis for material selection of an automotive component , 2012 .

[67]  Yunhai Ma,et al.  Natural fibre reinforced non-asbestos organic non-metallic friction composites: effect of abaca fibre on mechanical and tribological behaviour , 2018 .

[68]  Mushtak Al-Atabi,et al.  Acoustic Absorption of Natural Fiber Composites , 2016 .

[69]  Luise Kärger,et al.  Evaluation of impact assessment methodologies. Part I: Applied methods , 2009 .

[70]  Manjusri Misra,et al.  The influence of fibre treatment on the performance of coir-polyester composites , 2001 .

[71]  S. Kulkarni,et al.  Investigation on effect of using rubber as core material in sandwich composite plate subjected to low velocity normal and oblique impact loading , 2018 .

[72]  Balbir Singh Kaith,et al.  Cellulose Fibers: Bio- and Nano-Polymer Composites , 2011 .

[73]  T. Czigány,et al.  Damage detection and self-repair in hollow glass fiber fabric-reinforced epoxy composites via fiber filling , 2014 .

[74]  R. Rao A material selection model using graph theory and matrix approach , 2006 .

[75]  R.V. Silva,et al.  Thermal, Mechanical, and Hygroscopic Behavior of Sisal Fiber/Polyurethane Resin-based Composites , 2010 .

[76]  Francesco Pilati,et al.  Intraply and interply hybrid composites based on E‐glass and poly(vinyl alcohol) woven fabrics: tensile and impact properties , 2004 .

[77]  A. Kueh,et al.  Comparative low-velocity impact behavior of bio-inspired and conventional sandwich composite beams , 2017 .

[78]  Minhao Zhu,et al.  Properties of natural fibre composites for structural engineering applications , 2018 .

[79]  V. Madhu,et al.  Response of E-glass/Epoxy and Dyneema® Composite Laminates Subjected to low and High Velocity Impact , 2017 .

[80]  Jim Holbery,et al.  Natural-fiber-reinforced polymer composites in automotive applications , 2006 .

[81]  Feng Liu,et al.  Study of impact performance of rubber reinforced concrete , 2012 .

[82]  Jörg Müssig,et al.  Impact and tensile properties of PLA/Cordenka and PLA/flax composites , 2008 .

[83]  Michel Biron Thermoplastics and Thermoplastic Composites: Technical Information for Plastics Users , 2007 .

[84]  M. Habibi,et al.  Influence of low-velocity impact on residual tensile properties of nonwoven flax/epoxy composite , 2018 .

[85]  Numerical Modeling of Energy Absorption Behaviour of Aluminium Foam Cored Sandwich Panels with Different Fibre Reinforced Polymer (FRP) Composite Facesheet Skins , 2016 .

[86]  Julien Aubry,et al.  Experimental and numerical study of oblique impact on woven composite sandwich structure: Influence of the firing axis orientation , 2012 .

[87]  M. Sain,et al.  Performance of long Canadian natural fibers as reinforcements in polymers , 2010 .

[88]  K. Vignesh Mercerization treatment parameter effect on coir fiber reinforced polymer matrix composite , 2018, Materials Research Express.

[89]  Sabu Thomas,et al.  Natural Fibres: Structure, Properties and Applications , 2011 .

[90]  Mohammed A. Omar,et al.  Eco-material selection using fuzzy TOPSIS method , 2016 .

[91]  K. V. Rao,et al.  Behavior of E-glass composite laminates under ballistic impact , 2015 .

[92]  Yaxin Bi,et al.  Product-cost modelling approach for the development of a decision support system for optimal roofing material selection , 2012, Expert Syst. Appl..

[93]  J. Bieniaś,et al.  Low-velocity impact resistance of aluminium glass laminates – Experimental and numerical investigation , 2016 .

[94]  C. Liu,et al.  High velocity impact responses of sandwich panels with metal fibre laminate skins and aluminium foam core , 2017 .

[95]  D. Varas,et al.  Numerical analysis of high velocity impacts on unidirectional laminates , 2014 .

[96]  Pietro Russo,et al.  Ultrasonic damage investigation on woven jute/poly (lactic acid) composites subjected to low velocity impact , 2017 .

[97]  Tore Børvik,et al.  Normal and oblique impact of small arms bullets on AA6082-T4 aluminium protective plates , 2011 .

[98]  Smita Mohanty,et al.  Short Bamboo Fiber-reinforced HDPE Composites: Influence of Fiber Content and Modification on Strength of the Composite , 2010 .

[99]  Rodrigo Pascual,et al.  Optimal maintenance service contract negotiation with aging equipment , 2008, Eur. J. Oper. Res..

[100]  Pomeroy,et al.  Ceramic Matrix Composites: Matrices and Processing , 2001 .

[101]  Vimal Kumar Pathak,et al.  A novel hybrid TOPSIS-PSI approach for material selection in marine applications , 2019, Sādhanā.

[102]  Abbas S. Milani,et al.  On the effect of subjective, objective and combinative weighting in multiple criteria decision making: A case study on impact optimization of composites , 2016, Expert Syst. Appl..

[103]  M. Porfiri,et al.  Comparison of tensile and compressive characteristics of vinyl ester/glass microballoon syntactic foams , 2010 .

[104]  Michelle S. Hoo Fatt,et al.  Dynamic models for low-velocity impact damage of composite sandwich panels – Part A: Deformation , 2001 .

[105]  M. Ansari,et al.  Ballistic Performance of Unidirectional Glass Fiber Laminated Composite Plate under Normal and Oblique Impact , 2017 .

[106]  J. Mahmud,et al.  Mechanical properties of functionalised CNT filled kenaf reinforced epoxy composites , 2018 .

[108]  Qingguo Fei,et al.  Drop-weight impact behavior of honeycomb sandwich panels under a spherical impactor , 2017 .

[109]  A. Célino,et al.  The hygroscopic behavior of plant fibers: a review , 2013, Front. Chem..

[110]  S. M. Sapuan,et al.  Material screening and choosing methods: A review , 2010 .

[111]  L. Gornet,et al.  Experimental and numerical investigations of low energy/velocity impact damage generated in 3D woven composite with polymer matrix , 2017 .

[112]  James D. Dorer,et al.  An experimental investigation into the high velocity impact responses of S2-glass/SC15 epoxy composite panels with a gas gun , 2018 .

[113]  Zhenqing Wang,et al.  Fatigue behavior of glass-fiber-reinforced epoxy composites embedded with shape memory alloy wires , 2017 .

[114]  S. Shankar,et al.  Characterization of natural fiber and composites – A review , 2013 .

[115]  V. Patel,et al.  Influence of CaCO3, Al2O3, and TiO2 microfillers on physico-mechanical properties of Luffa cylindrica/polyester composites , 2016 .

[116]  M. Hasan,et al.  Physico-Mechanical Properties of Jute Fiber Reinforced Polypropylene Composites , 2010 .

[117]  Andrzej K. Bledzki,et al.  Mechanical properties of PLA composites with man-made cellulose and abaca fibres , 2009 .

[118]  S. Kulkarni,et al.  Behaviour of Natural Rubber in Comparison with Structural Steel, Aluminium and Glass Epoxy Composite under Low Velocity Impact Loading , 2017 .

[119]  Romesh C. Batra,et al.  Effect of matrix on ballistic performance of soft body armor , 2012 .

[120]  M. S. Kumar,et al.  Design and analysis of dual band implantable DGS antenna for medical applications , 2019, Sādhanā.

[121]  Abdullah Al Mamun,et al.  Polypropylene composites with enzyme modified abaca fibre , 2010 .

[122]  I. Ivañez,et al.  The oblique impact response of composite sandwich plates , 2015 .

[123]  P. Mallick,et al.  Impact Damage Resistance of Random Fiber Reinforced Automotive Composites , 2002 .

[124]  V. Madhu,et al.  Low velocity impact studies of E-glass/epoxy composite laminates at different thicknesses and temperatures , 2019 .

[125]  Sun-Young Lee,et al.  Effects of Filler and Coupling Agent on the Properties of Bamboo Fiber-Reinforced Polypropylene Composites , 2009 .

[126]  Selin Soner Kara,et al.  Selecting the suitable material handling equipment in the presence of vagueness , 2009 .

[127]  I. Y. Chang,et al.  Recent Development in Thermoplastic Composites: A Review of Matrix Systems and Processing Methods , 1988 .

[128]  Y. Aminanda,et al.  Impact Characterisation of Glass Fibre Reinforced Polymer (GFRP) Type C-600 and E-800 Using a Drop Weight Machine , 2014 .

[129]  M. Xanthos Functional fillers for plastics , 2005 .

[130]  Cengiz Kahraman,et al.  An integrated fuzzy multi-criteria decision making methodology for material handling equipment selection problem and an application , 2010, Expert Syst. Appl..

[131]  Mohammad Jawaid,et al.  TOPSIS method for selection of best composite laminate , 2019 .

[132]  L. Anojkumar,et al.  A decision making methodology for material selection in sugar industry using hybrid MCDM techniques , 2015 .

[133]  Leonardo Lecce,et al.  Simulation of low velocity impact on composite laminates with progressive failure analysis , 2013 .

[134]  F. Cardona,et al.  IMPACT DAMAGE EVALUATION OF GLASS-FIBER REINFORCED POLYMER ( GFRP ) USING THE DROP TEST RIG – AN EXPERIMENTAL BASED APPROACH , 2015 .

[135]  Z. Leman,et al.  Selection of Natural Fibre for Hybrid Laminated Composites Vehicle Spall Liners Using Analytical Hierarchy Process (AHP) , 2014 .

[136]  Pattabhi R. Budarapu,et al.  Studies on ballistic impact of the composite panels , 2014 .

[137]  Serge Abrate,et al.  Impact on Composite Structures , 1998 .

[138]  Libo Yan,et al.  Flax fibre and its composites – A review , 2014 .

[139]  Abbas Mardani,et al.  Multiple criteria decision-making techniques and their applications – a review of the literature from 2000 to 2014 , 2015 .

[140]  Valentina Lopresto,et al.  Low impact behaviour of hemp fibre reinforced epoxy composites , 2015 .

[141]  H. Fang,et al.  A numerical study of steel and hybrid armor plates under ballistic impacts , 2017 .

[142]  I. Papa,et al.  Mechanical properties of glass fibre composites based on nitrile rubber toughened modified epoxy resin , 2018 .

[143]  E. Barbero,et al.  Analytical study of the low-velocity impact response of composite sandwich beams , 2014 .

[144]  B. Gangil,et al.  Influence of woven bast-leaf hybrid fiber on the physico-mechanical and sliding wear performance of epoxy based polymer composites , 2018, Materials Research Express.

[145]  A. Shaw,et al.  Numerical investigation of ballistic performance of shear thickening fluid (STF)-Kevlar composite , 2019 .

[146]  M.K. Gupta,et al.  Sisal (Agave sisalana) fibre and its polymer-based composites: A review on current developments , 2017 .

[147]  R. Venkata Rao,et al.  A decision making methodology for material selection using an improved compromise ranking method , 2008 .

[148]  I. Verpoest,et al.  Low velocity impact properties of flax composites , 2017 .

[149]  L. Mwaikambo Tensile properties of alkalised jute fibres , 2009, BioResources.

[150]  Xiang Zhang,et al.  An efficient approach for predicting low-velocity impact force and damage in composite laminates , 2015 .

[151]  A. Liverani,et al.  Mechanical and impact characterization of hybrid composite laminates with carbon, basalt and flax fibres , 2017 .

[152]  M. R. Khalili,et al.  Analytical Prediction of Low-velocity Impact Response of Composite Sandwich Panels using New TDOF Spring–mass–damper Model , 2006 .

[153]  Ting-Yu Chen,et al.  Comparative analysis of SAW and TOPSIS based on interval-valued fuzzy sets: Discussions on score functions and weight constraints , 2012, Expert Syst. Appl..

[154]  A. Odeshi,et al.  Dynamic and ballistic impact behavior of biocomposite armors made of HDPE reinforced with chonta palm wood (Bactris gasipaes) microparticles , 2018, Defence Technology.

[155]  Impact energy absorption of flax fiber‐reinforced polypropylene composites , 2018 .

[156]  N. Bhushan,et al.  Strategic Decision Making: Applying the Analytic Hierarchy Process , 2004 .

[157]  R. Eslami‐Farsani,et al.  The effects of stacking sequence and thermal cycling on the flexural properties of laminate composites of aluminium-epoxy/basalt-glass fibres , 2018 .

[159]  S. Kulkarni,et al.  Development and mechanical characterization of novel polymer-based flexible composite and optimization of stacking sequences using VIKOR and PSI techniques , 2019, Journal of Thermoplastic Composite Materials.

[160]  A. Bahramian,et al.  Impact response of Kevlar/rubber composite , 2019, Composites Science and Technology.

[161]  Rashmi Walvekar,et al.  Mechanical and thermal properties of polylactic acid composites reinforced with cellulose nanoparticles extracted from kenaf fibre , 2016 .

[162]  Caroline Baillie,et al.  On the mechanical properties, deformation and fracture of a natural fibre/recycled polymer composite , 2003 .

[163]  Chun-Gon Kim,et al.  Numerical simulation and empirical comparison of the high velocity impact of STF impregnated Kevlar fabric using friction effects , 2015 .

[164]  José Ramón San Cristóbal,et al.  Multi Criteria Analysis in the Renewable Energy Industry , 2012 .

[165]  Magd Abdel Wahab,et al.  Proceedings of the 8th International Conference on Fracture, Fatigue and Wear , 2021, Lecture Notes in Mechanical Engineering.

[166]  J. Pernas-Sánchez,et al.  Experimental analysis of normal and oblique high velocity impacts on carbon/epoxy tape laminates , 2014 .

[167]  Ivica Smojver,et al.  Explicit Multiscale Modelling of Impact Damage on Laminated Composites – Part I: Validation of the Micromechanical Model , 2016 .

[168]  F. Cardona,et al.  Impact characterisation of glass fibre-reinforced polymer (GFRP) Type C-600 and E-800 using a single stage gas gun (SSGG) , 2017 .

[169]  N. Bhatnagar,et al.  Ballistic impact response of Kevlar® reinforced thermoplastic composite armors , 2016 .

[170]  N. Gupta,et al.  Microscopic studies of syntactic foams tested under three-point bending conditions , 2002 .

[171]  Ahmet S. Yigit,et al.  EFFECT OF FLEXIBILITY ON LOW VELOCITY IMPACT RESPONSE , 1998 .

[172]  Xiang-bao Chen,et al.  Improving compression-after-impact performance of carbon–fiber composites by CNTs/thermoplastic hybrid film interlayer , 2014 .

[173]  Uday Sharma,et al.  Modeling and damage repair of woven thermoplastic composites subjected to low velocity impact , 2010 .

[174]  Liping He,et al.  Influence of silicone oil modification on properties of ramie fiber reinforced polypropylene composites , 2012 .

[175]  M. Islam,et al.  Preparation and characterization of polypropylene composites reinforced with chemically treated coir , 2012, Journal of Polymer Research.

[176]  T. Endo,et al.  Size Effect of Oil Palm Fibers on Tensile Properties of Oil Palm Fiber- Reinforced Polypropylene Composites , 2017 .

[177]  M. Misra,et al.  Natural, Fibers, Biopolymers and Biocomposites , 2009 .

[178]  S. Mohanty,et al.  Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites , 2006 .

[179]  M. Leite,et al.  Natural Fibre Composites and Their Applications: A Review , 2018, Journal of Composites Science.

[180]  Brian Falzon,et al.  Predicting low velocity impact damage and Compression-After-Impact (CAI) behaviour of composite laminates , 2015 .

[181]  Marco Montemurro,et al.  Low-velocity impact tests on carbon/epoxy composite laminates: A benchmark study , 2016 .

[182]  L. Gorbatikh,et al.  Impact and residual after impact properties of carbon fiber/epoxy composites modified with carbon nanotubes , 2014 .

[183]  Prasenjit Chatterjee,et al.  An Integrated DEMATEL–VIKOR Method-Based Approach for Cotton Fibre Selection and Evaluation , 2018 .

[184]  Prasad Potluri,et al.  Healing potential of hybrid materials for structural composites , 2015 .

[185]  Lucas Tedesco Bolzan,et al.  Performance of natural curaua fiber-reinforced polyester composites under 7.62 mm bullet impact as a stand-alone ballistic armor , 2017 .

[186]  Wei Zhang,et al.  Experimental investigation of normal and oblique impacts on CFRPs by high velocity steel sphere , 2016 .

[187]  Mohan K. Pradhan,et al.  Optimization the machining parameters by using VIKOR Method during EDM process of Titanium alloy , 2018 .

[188]  Effect of impactor radius on low-velocity impact damage of glass/epoxy composites , 2012 .

[189]  L. Pilato,et al.  Phenolic Resins: A Century of Progress , 2010 .

[190]  Adnene Sakly,et al.  Experimental and modelling study of low velocity impacts on composite sandwich structures for railway applications , 2016 .

[191]  Khader M. Hamdia,et al.  Structural damage assessment criteria for reinforced concrete buildings by using a Fuzzy Analytic Hierarchy process , 2018, Underground Space.

[192]  R. Boukhili,et al.  Low-velocity impact resistance of ATH/epoxy core sandwich composite panels: Experimental and numerical analyses , 2017 .

[193]  William James Stronge,et al.  Ballistic limit for oblique impact of thin sandwich panels and spaced plates , 2008 .

[194]  Hao Wang,et al.  EFFECTS OF NATURAL FIBRE SURFACE ON COMPOSITE PROPERTIES: A REVIEW , 2011 .

[195]  P. Gaudenzi,et al.  Low velocity impact response of basalt-aluminium fibre metal laminates , 2016 .

[196]  Bing Li,et al.  Simplified Analytical Models to Predict Low-Velocity Impact Response of RC Beams , 2018 .

[197]  K. Oksman,et al.  The influence of fibre microstructure on fibre breakage and mechanical properties of natural fibre reinforced polypropylene , 2009 .

[198]  Khader M. Hamdia,et al.  Uncertainty quantification of the fracture properties of polymeric nanocomposites based on phase field modeling , 2015 .

[199]  Ali Shanian,et al.  A material selection model based on the concept of multiple attribute decision making , 2006 .

[200]  D. Chandramohan,et al.  Natural Fiber Reinforced Polymer Composites for Automobile Accessories , 2013 .

[201]  T. M. Young,et al.  Inclusion of a thermoplastic phase to improve impact and post-impact performances of carbon fibre reinforced thermosetting composites — A review , 2015 .

[202]  S. Chakraborty,et al.  Grinding Wheel Abrasive Material Selection Using Fuzzy TOPSIS Method , 2013 .

[203]  E. Spārniņš Mechanical properties of flax fibers and their composites , 2009 .