Semiempirical self-consistent polarization description of bulk water, the liquid-vapor interface, and cubic ice.

We have applied an efficient electronic structure approach, the semiempirical self-consistent polarization neglect of diatomic differential overlap (SCP-NDDO) method, previously parametrized to reproduce properties of water clusters by Chang, Schenter, and Garrett [ J. Chem. Phys. 2008 , 128 , 164111 ] and now implemented in the CP2K package, to model ambient liquid water at 300 K (both the bulk and the liquid-vapor interface) and cubic ice at 15 and 250 K. The SCP-NDDO potential retains its transferability and good performance across the full range of conditions encountered in the clusters and the bulk phases of water. In particular, we obtain good results for the density, radial distribution functions, enthalpy of vaporization, self-diffusion coefficient, molecular dipole moment distribution, and hydrogen bond populations, in comparison to experimental measurements.

[1]  B. Berne,et al.  Efficient molecular dynamics and hybrid Monte Carlo algorithms for path integrals , 1993 .

[2]  M. Dewar,et al.  Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters , 1977 .

[3]  Andrey A. Bliznyuk,et al.  MNDO/M Calculations on hydrogen bonded systems , 1988 .

[4]  J. Stewart Optimization of parameters for semiempirical methods I. Method , 1989 .

[5]  G. Klopman,et al.  A semiempirical treatment of molecular structures. II. Molecular terms and application to diatomic molecules , 1964 .

[6]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[7]  Bin Chen,et al.  Structure and dynamics of the aqueous liquid-vapor interface: a comprehensive particle-based simulation study. , 2006, The journal of physical chemistry. B.

[8]  I-Feng W. Kuo,et al.  An ab Initio Molecular Dynamics Study of the Aqueous Liquid-Vapor Interface , 2004, Science.

[9]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[10]  M. Dewar,et al.  Molecular orbital calculations on carbonium ions. II. Methyl, ethyl, and vinyl cations. The series C3H7+ , 1969 .

[11]  J. Stewart Application of the PM6 method to modeling the solid state , 2008, Journal of molecular modeling.

[12]  Katie A. Maerzke,et al.  Self-consistent polarization density functional theory: application to argon. , 2009, The journal of physical chemistry. A.

[13]  Bálint Aradi,et al.  The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations. , 2010, The journal of physical chemistry. B.

[14]  G. Voth,et al.  Quantum effects in liquid water from an ab initio-based polarizable force field. , 2007, The Journal of chemical physics.

[15]  Alan K. Soper,et al.  Site–site pair correlation functions of water from 25 to 400 °C: Revised analysis of new and old diffraction data , 1997 .

[16]  Michael J. S. Dewar,et al.  The s.p-o. (split-p-orbital) method, II. Further definition and application to acctylene , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[17]  Amiram Goldblum,et al.  Improvement of the hydrogen bonding correction to MNDO for calculations of biochemical interest , 1987 .

[18]  L. Dang,et al.  MOLECULAR DYNAMICS STUDY OF WATER CLUSTERS, LIQUID, AND LIQUID-VAPOR INTERFACE OF WATER WITH MANY-BODY POTENTIALS , 1997 .

[19]  J. Stewart A practical method for modeling solids using semiempirical methods , 2000 .

[20]  Michele Parrinello,et al.  Water Molecule Dipole in the Gas and in the Liquid Phase , 1999 .

[21]  Michael J. S. Dewar,et al.  The SPO (Split p‐Orbital) Method and Its Application to Ethylene , 1961 .

[22]  James J P Stewart,et al.  Optimization of parameters for semiempirical methods IV: extension of MNDO, AM1, and PM3 to more main group elements , 2004, Journal of molecular modeling.

[23]  Walter Thiel,et al.  QM-MM interactions in simulations of liquid water using combined semi-empirical/classical Hamiltonians. , 2008, Physical chemistry chemical physics : PCCP.

[24]  A. Isaev,et al.  MNDO calculations on hydrogen bonds. Modified function for core-core repulsion , 1984 .

[25]  G. Schenter,et al.  Improving the density functional theory description of water with self-consistent polarization. , 2010, The Journal of chemical physics.

[26]  Timothy Clark,et al.  Quo Vadis semiempirical MO-theory? , 2000 .

[27]  M. Dewar,et al.  THE SPLIT p-ORBITAL (S.P.O.) METHOD. III. RELATIONSHIP TO OTHER M.O. TREATMENTS AND APPLICATION TO BENZENE, BUTADIENE, AND NAPHTHALENE1 , 1962 .

[28]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[29]  Bertrand Guillot,et al.  A reappraisal of what we have learnt during three decades of computer simulations on water , 2002 .

[30]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[31]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[32]  Yaoquan Tu,et al.  The electronic properties of water molecules in water clusters and liquid water , 2000 .

[33]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[34]  Walter Thiel,et al.  Orthogonalization corrections for semiempirical methods , 2000 .

[35]  Alan K. Soper,et al.  The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa , 2000 .

[36]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[37]  Jianguo Yu,et al.  SAM1; The first of a new series of general purpose quantum mechanical molecular models , 1993 .

[38]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[39]  Walter Thiel,et al.  Beyond the MNDO model: Methodical considerations and numerical results , 1993, J. Comput. Chem..

[40]  Timothy Clark,et al.  Towards a ‘‘next generation’’ neglect of diatomic differential overlap based semiempirical molecular orbital technique , 2003 .

[41]  Sándor Suhai,et al.  Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties , 1998 .

[42]  M. McGrath,et al.  Time-Dependent Properties of Liquid Water:  A Comparison of Car-Parrinello and Born-Oppenheimer Molecular Dynamics Simulations. , 2005, Journal of chemical theory and computation.

[43]  Manuel F. Ruiz-López,et al.  Basic ideas for the correction of semiempirical methods describing H-bonded systems , 2000 .

[44]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[45]  J. Stewart Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements , 2007, Journal of molecular modeling.

[46]  Hoover,et al.  Constant-pressure equations of motion. , 1986, Physical review. A, General physics.

[47]  G. Groenenboom,et al.  Polarizable interaction potential for water from coupled cluster calculations. II. Applications to dimer spectra, virial coefficients, and simulations of liquid water. , 2008, The Journal of chemical physics.

[48]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[49]  J. Gale Semi-empirical methods as a tool in solid-state chemistry , 1997 .

[50]  J. Pople,et al.  Approximate Self-Consistent Molecular Orbital Theory. I. Invariant Procedures , 1965 .

[51]  Laurence S. Rothman,et al.  Dipole moment of water from Stark measurements of H2O, HDO, and D2O , 1973 .

[52]  Gerald Geudtner,et al.  Treatment of hydrogen bonding in SINDO1 , 1993, J. Comput. Chem..

[53]  Andrés Aguado,et al.  Ewald summation of electrostatic multipole interactions up to the quadrupolar level , 2003 .

[54]  S. Nosé,et al.  An extension of the canonical ensemble molecular dynamics method , 1986 .

[55]  Saroj K. Nayak,et al.  Towards extending the applicability of density functional theory to weakly bound systems , 2001 .

[56]  J. Skinner,et al.  Hydrogen bonding definitions and dynamics in liquid water. , 2007, The Journal of chemical physics.

[57]  B. C. Garrett,et al.  Self-consistent polarization neglect of diatomic differential overlap: application to water clusters. , 2008, The Journal of chemical physics.

[58]  Konrad Patkowski,et al.  Dispersionless density functional theory. , 2009, Physical review letters.

[59]  Michael W. Mahoney,et al.  Diffusion constant of the TIP5P model of liquid water , 2001 .

[60]  Dean R. Haeffner,et al.  Electron distribution in water , 2000 .

[61]  P. Ball Water as an active constituent in cell biology. , 2008, Chemical reviews.

[62]  K. Merz,et al.  Simulation of liquid water using semiempirical Hamiltonians and the divide and conquer approach. , 2005, The journal of physical chemistry. A.

[63]  R. Mills,et al.  Self-diffusion in normal and heavy water in the range 1-45.deg. , 1973 .

[64]  Greg L. Hura,et al.  A high-quality x-ray scattering experiment on liquid water at ambient conditions , 2000 .

[65]  Claude Millot,et al.  Improving description of hydrogen bonds at the semiempirical level: water–water interactions as test case , 2000 .

[66]  A. Voityuk,et al.  MNDO calculations of systems containing hydrogen bonds , 1987 .

[67]  C. K. Lutrus,et al.  A study of hydrogen bond strengths of neutral water clusters (H2O)n using modified MNDO , 1986 .

[68]  Hao Hu,et al.  Simulating water with the self-consistent-charge density functional tight binding method: from molecular clusters to the liquid state. , 2007, The journal of physical chemistry. A.

[69]  William L. Jorgensen,et al.  PDDG/PM3 and PDDG/MNDO: Improved semiempirical methods , 2002, J. Comput. Chem..

[70]  Greg L. Hura,et al.  What can x-ray scattering tell us about the radial distribution functions of water? , 2000 .

[71]  Gerhard Hummer,et al.  System-Size Dependence of Diffusion Coefficients and Viscosities from Molecular Dynamics Simulations with Periodic Boundary Conditions , 2004 .

[72]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[73]  Teodoro Laino,et al.  Notes on "Ewald summation of electrostatic multipole interactions up to quadrupolar level" [J. Chem. Phys. 119, 7471 (2003)]. , 2008, The Journal of chemical physics.