A Need-Finding Study with Users of Geospatial Data

Geospatial data is playing an increasingly critical role in the work of Earth and climate scientists, social scientists, and data journalists exploring spatiotemporal change in our environment and societies. However, existing software and programming tools for geospatial analysis and visualization are challenging to learn and difficult to use. The aim of this work is to identify the unmet computing needs of the diverse and expanding community of geospatial data users. We conducted a contextual inquiry study (n = 25) with domain experts using geospatial data in their current work. Through a thematic analysis, we found that participants struggled to (1) find and transform geospatial data to satisfy spatiotemporal constraints, (2) understand the behavior of geospatial operators, (3) track geospatial data provenance, and (4) explore the cartographic design space. These findings suggest design opportunities for developers and designers of geospatial analysis and visualization systems.

[1]  Zhiwei Steven Wu,et al.  Improving Human-AI Partnerships in Child Welfare: Understanding Worker Practices, Challenges, and Desires for Algorithmic Decision Support , 2022, CHI.

[2]  Tom Bartindale,et al.  Exploring the Opportunities for Online Learning Platforms to Support the Emergency Home School Context , 2021, CHI.

[3]  Sana Arshad,et al.  Geospatial Analysis of COVID-19: A Scoping Review , 2021, International journal of environmental research and public health.

[4]  M. Peterson Cartography: visualization of geospatial data, 4th ed. , 2021, International Journal of Cartography.

[5]  Esther Rolf,et al.  A generalizable and accessible approach to machine learning with global satellite imagery , 2020, Nature Communications.

[6]  Keenan Crane,et al.  Penrose: from mathematical notation to beautiful diagrams , 2020, ACM Trans. Graph..

[7]  Sumit Gulwani,et al.  Wrex: A Unified Programming-by-Example Interaction for Synthesizing Readable Code for Data Scientists , 2020, CHI.

[8]  Sorin Lerner,et al.  Projection Boxes: On-the-fly Reconfigurable Visualization for Live Programming , 2020, CHI.

[9]  Koushik Sen,et al.  AutoPandas: neural-backed generators for program synthesis , 2019, Proc. ACM Program. Lang..

[10]  Sumit Gulwani,et al.  On the fly synthesis of edit suggestions , 2019, Proc. ACM Program. Lang..

[11]  Ravi Chugh,et al.  Sketch-n-Sketch: Output-Directed Programming for SVG , 2019, UIST.

[12]  Ruzica Piskac,et al.  Live Programming By Example , 2019, CHI Extended Abstracts.

[13]  Michael J. Muller,et al.  How Data Science Workers Work with Data: Discovery, Capture, Curation, Design, Creation , 2019, CHI.

[14]  Elena Paslaru Bontas Simperl,et al.  Collaborative Practices with Structured Data: Do Tools Support What Users Need? , 2019, CHI.

[15]  Brad A. Myers,et al.  Towards Effective Foraging by Data Scientists to Find Past Analysis Choices , 2019, CHI.

[16]  Christian Kray,et al.  Usability evaluation for geographic information systems: a systematic literature review , 2018, Int. J. Geogr. Inf. Sci..

[17]  Jeffrey Heer,et al.  Formalizing Visualization Design Knowledge as Constraints: Actionable and Extensible Models in Draco , 2018, IEEE Transactions on Visualization and Computer Graphics.

[18]  Philip Brisk,et al.  BioScript: programming safe chemistry on laboratories-on-a-chip , 2018, Proc. ACM Program. Lang..

[19]  Rastislav Bodík,et al.  Rousillon: Scraping Distributed Hierarchical Web Data , 2018, UIST.

[20]  Brad A. Myers,et al.  The Story in the Notebook: Exploratory Data Science using a Literate Programming Tool , 2018, CHI.

[21]  Arvind Satyanarayan,et al.  Vega-Lite: A Grammar of Interactive Graphics , 2018, IEEE Transactions on Visualization and Computer Graphics.

[22]  Michael Dixon,et al.  Google Earth Engine: Planetary-scale geospatial analysis for everyone , 2017 .

[23]  Christian Kray,et al.  An approach for harvesting, visualizing, and analyzing WebGIS sessions to identify usability issues , 2017, EICS.

[24]  Melanie Feinberg,et al.  A Design Perspective on Data , 2017, CHI.

[25]  Brad A. Myers,et al.  Variolite: Supporting Exploratory Programming by Data Scientists , 2017, CHI.

[26]  Michael Weber,et al.  Exploring End User Programming Needs in Home Automation , 2017, ACM Trans. Comput. Hum. Interact..

[27]  Karen Holtzblatt,et al.  Principles of Contextual Inquiry , 2017 .

[28]  Chaowei Yang,et al.  Utilizing Cloud Computing to address big geospatial data challenges , 2017, Comput. Environ. Urban Syst..

[29]  BodikRastislav,et al.  Ringer: web automation by demonstration , 2016 .

[30]  Sumit Gulwani,et al.  Ringer: web automation by demonstration , 2016, OOPSLA.

[31]  Thomas D. LaToza,et al.  Programmers Are Users Too: Human-Centered Methods for Improving Programming Tools , 2016, Computer.

[32]  Hans W. Guesgen,et al.  Geospatial Reasoning With Open Data , 2016 .

[33]  Jae-Gil Lee,et al.  Geospatial Big Data: Challenges and Opportunities , 2015, Big Data Res..

[34]  Sumit Gulwani,et al.  Browser Record and Replay as a Building Block for End-User Web Automation Tools , 2015, WWW.

[35]  Christian Kray,et al.  Ethermap: Real-time Collaborative Map Editing , 2015, CHI.

[36]  Emmanuel Pietriga,et al.  An Evaluation of Interactive Map Comparison Techniques , 2015, CHI.

[37]  Leysia Palen,et al.  Success & Scale in a Data-Producing Organization: The Socio-Technical Evolution of OpenStreetMap in Response to Humanitarian Events , 2015, CHI.

[38]  Jianya Gong,et al.  Real-time GIS data model and sensor web service platform for environmental data management , 2015, International Journal of Health Geographics.

[39]  Alenka Poplin,et al.  How user-friendly are online interactive maps? Survey based on experiments with heterogeneous users , 2015 .

[40]  M. P. Richards,et al.  The Gerrymandering of School Attendance Zones and the Segregation of Public Schools , 2014 .

[41]  Jon May,et al.  Collocating interface objects: zooming into maps , 2014, CHI.

[42]  Martha C. Anderson,et al.  Landsat-8: Science and Product Vision for Terrestrial Global Change Research , 2014 .

[43]  Michael D. Ernst,et al.  Interactive record/replay for web application debugging , 2013, UIST.

[44]  Dean N. Williams,et al.  The Earth System Grid Federation: An open infrastructure for access to distributed geospatial data , 2012, 2012 IEEE 8th International Conference on E-Science.

[45]  Manolis Koubarakis,et al.  Data Models and Query Languages for Linked Geospatial Data , 2012, Reasoning Web.

[46]  Matthias Drusch,et al.  Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services , 2012 .

[47]  Jerry Shannon,et al.  Using Eye-tracking and Mouse Metrics to Test Usability of Web Mapping Navigation , 2012 .

[48]  Jeffrey Heer,et al.  Proactive wrangling: mixed-initiative end-user programming of data transformation scripts , 2011, UIST.

[49]  Johannes Schöning,et al.  Geographic human-computer interaction , 2011, CHI Extended Abstracts.

[50]  Jeffrey Heer,et al.  Wrangler: interactive visual specification of data transformation scripts , 2011, CHI.

[51]  Christian Heipke,et al.  Crowdsourcing geospatial data , 2010 .

[52]  Jeffrey Heer,et al.  Declarative Language Design for Interactive Visualization , 2010, IEEE Transactions on Visualization and Computer Graphics.

[53]  Jon Howell,et al.  Mugshot: Deterministic Capture and Replay for JavaScript Applications , 2010, NSDI.

[54]  Michael F. Goodchild,et al.  Geographic , 2020, Definitions.

[55]  Mordechai (Muki) Haklay,et al.  Usability Engineering for GIS: Learning from a Screenshot , 2008 .

[56]  Jon Howell,et al.  Do I live in a flood basin?: synthesizing ten thousand maps , 2008, CHI.

[57]  Eben M. Haber,et al.  CoScripter: automating & sharing how-to knowledge in the enterprise , 2008, CHI.

[58]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[59]  N. Leech,et al.  Validity and Qualitative Research: An Oxymoron? , 2007 .

[60]  V. Braun,et al.  Using thematic analysis in psychology , 2006 .

[61]  H. Lieberman Your Wish is My Command: Programming By Example , 2001 .

[62]  R. Nickerson Confirmation Bias: A Ubiquitous Phenomenon in Many Guises , 1998 .

[63]  Marian G. Williams,et al.  A study of end-user programming for geographic information systems , 1997, ESP '97.

[64]  David Medyckyj-Scott,et al.  GIS Users Observed , 1996, Int. J. Geogr. Inf. Sci..

[65]  Marian G. Williams,et al.  Why are geographic information systems hard to use? , 1995, CHI 95 Conference Companion.

[66]  Marie-Aude Aufaure-Portier,et al.  Definition of a Visual Language for GIS , 1995 .

[67]  David Medyckyj-Scott,et al.  Feet on the Ground: Studying User-GIS Interaction in the Workplace , 1995 .

[68]  Clare Davies,et al.  GIS Usability: Recommendations Based on the User's View , 1994, Int. J. Geogr. Inf. Sci..

[69]  C. Daly,et al.  A Statistical-Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain , 1994 .

[70]  Simon P. Davies,et al.  From Individuals to Groups Through Artifacts: The Changing Semantics of Design in Software Development , 1994 .

[71]  G. David Garson,et al.  Analytic Mapping and Geographic Databases , 1992 .