Low Rate Concatenated Zigzag-Hadamard Codes

We introduce a new class of low-rate error correction codes called concatenated zigzag Hadamard (ZH) codes which are specified by a highly structured zigzag graph with each segment being a Hadamard codeword. The ZH codes enjoy extremely simple encoding and very-low-complexity soft-input soft-output (SISO) decoding. We present an asymptotic performance analysis of the proposed codes using the extrinsic mutual information transfer (EXIT) chart for infinite-length codes. We also provide a union bound analysis of the error performance for finite-length codes.

[1]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[2]  Li Ping,et al.  Concatenated zigzag hadamard codes , 2006, IEEE Transactions on Information Theory.

[3]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[4]  Li Ping,et al.  Zigzag codes and concatenated zigzag codes , 2001, IEEE Trans. Inf. Theory.

[5]  Michael Lentmaier,et al.  Asymptotic analysis of superorthogonal turbo codes , 2003, IEEE Trans. Inf. Theory.

[6]  D. Divsalar,et al.  Coupled receiver-decoders for low rate turbo codes , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[7]  Sergio Benedetto,et al.  Unveiling turbo codes: some results on parallel concatenated coding schemes , 1996, IEEE Trans. Inf. Theory.

[8]  Robert J. McEliece,et al.  RA Codes Achieve AWGN Channel Capacity , 1999, AAECC.

[9]  Li Ping,et al.  Low-rate turbo-Hadamard codes , 2001, IEEE Trans. Inf. Theory.

[10]  Li Ping,et al.  Concatenated tree codes: A low-complexity, high-performance approach , 2001, IEEE Trans. Inf. Theory.

[11]  Radford M. Neal,et al.  Near Shannon limit performance of low density parity check codes , 1996 .

[12]  永井 豊,et al.  海外文献紹介 IEEE Communications Society Subject Matter Experts for Publication in the IEEE ICC 2006 Proceedings 特集 , 2008 .

[13]  Stephan ten Brink,et al.  Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..

[14]  Dariush Divsalar,et al.  Analysis, Design, and Iterative Decoding of Double Serially Concatenated Codes with Interleavers , 1998, IEEE J. Sel. Areas Commun..

[15]  Sae-Young Chung,et al.  On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit , 2001, IEEE Communications Letters.

[16]  Amir K. Khandani,et al.  Symbol-based turbo codes , 1999, IEEE Communications Letters.

[17]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[18]  Kari Pehkonen,et al.  Performance Evaluation of Superorthogonal Turbo Codes in AWGN and Flat Rayleigh Fading Channels , 1998, IEEE J. Sel. Areas Commun..

[19]  Guosen Yue,et al.  Low-rate generalized low-density parity-check codes with hadamard constraints , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..