Effect of Al2O3 Coating on Stabilizing LiNi0.4Mn0.4Co0.2O2 Cathodes

Using atomic layer deposition of Al2O3 coating, improved high-voltage cycling stability has been demonstrated for the layered nickel–manganese–cobalt pseudoternary oxide, LiNi0.4Mn0.4Co0.2O2. To understand the effect of the Al2O3 coating, we have utilized electrochemical impedance spectroscopy, operando synchrotron-based X-ray diffraction, and operando X-ray absorption near edge fine structure spectroscopy to characterize the structure and chemistry evolution of the LiNi0.4Mn0.4Co0.2O2 cathode during cycling. Using this combination of techniques, we show that the Al2O3 coating successfully mitigates the strong side reactions of the active material with the electrolyte at higher voltages (>4.4 V), without restricting the uptake and release of Li ions. The impact of the Al2O3 coating is also revealed at beginning of lithium deintercalation, with an observed delay in the evolution of oxidation and coordination environment for the Co and Mn ions in the coated electrode due to protection of the surface. This p...

[1]  M. Whittingham,et al.  Towards understanding the rate capability of layered transition metal oxides LiNiyMnyCo1−2yO2 , 2014 .

[2]  G. Ceder,et al.  A Combined Computational / Experimental Study on LiNi 1 / 3 Co 1 / 3 Mn 1 / 3 O 2 , 2022 .

[3]  S. Pejovnik,et al.  On the Interpretation of Measured Impedance Spectra of Insertion Cathodes for Lithium-Ion Batteries , 2010 .

[4]  Peng Lu,et al.  Unexpected Improved Performance of ALD Coated LiCoO2/Graphite Li‐Ion Batteries , 2013 .

[5]  J. Mcbreen,et al.  New findings on the phase transitions in Li1−xNiO2: in situ synchrotron X-ray diffraction studies , 1999 .

[6]  Jonathan J. Travis,et al.  Unexpected high power performance of atomic layer deposition coated Li[Ni1/3Mn1/3Co1/3]O2 cathodes , 2014 .

[7]  M Stanley Whittingham,et al.  Ultimate limits to intercalation reactions for lithium batteries. , 2014, Chemical reviews.

[8]  R. Holze,et al.  Surface modifications of electrode materials for lithium ion batteries , 2006 .

[9]  Peter Y. Zavalij,et al.  The synthesis, characterization and electrochemical behavior of the layered LiNi0.4Mn0.4Co0.2O2 compound , 2004 .

[10]  J. Cabana,et al.  Cation ordering in Li[NixMnxCo(1-2x)] O2-layered cathode materials: A nuclear magnetic resonance (NMR), pair distribution function, X-ray absorption spectroscopy, and electrochemical study , 2007 .

[11]  H. S. Lee,et al.  Electrochemical and In Situ Synchrotron XRD Studies on Al2 O 3-Coated LiCoO2 Cathode Material , 2004 .

[12]  Y. Shao-horn,et al.  Probing the Origin of Enhanced Stability of AlPO4 Nanoparticle Coated LiCoO2 during Cycling to High Voltages: Combined XRD and XPS Studies , 2009 .

[13]  Kang Xu,et al.  Electrolytes and interphases in Li-ion batteries and beyond. , 2014, Chemical reviews.

[14]  S. George,et al.  Low-Temperature Al2O3 Atomic Layer Deposition , 2004 .

[15]  E. A. Payzant,et al.  Extremely Durable High‐Rate Capability of a LiNi0.4Mn0.4Co0.2O2 Cathode Enabled with Single‐Walled Carbon Nanotubes , 2011 .

[16]  M. Doeff,et al.  Structural and electrochemical Investigation of Li(Ni0.4Co0.2-yAlyMn0.4)O2 Cathode Material , 2010 .

[17]  Gerbrand Ceder,et al.  A Combined Computational/Experimental Study on LiNi1/3Co1/3Mn1/3O2 , 2003 .

[18]  Xiao‐Qing Yang,et al.  Thermal stability of charged LiNi0.5Co0.2Mn0.3O2 cathode for Li-ion batteries investigated by synchrotron based in situ X-ray diffraction , 2013 .

[19]  N. Kalaiselvi,et al.  Effect of surface modifiers in improving the electrochemical behavior of LiNi0.4Mn0.4Co0.2O2 cathode , 2013 .

[20]  Xiao‐Qing Yang,et al.  In situ XRD studies of the structural changes of ZrO2-coated LiCoO2 during cycling and their effects on capacity retention in lithium batteries , 2006 .

[21]  Jeffrey W. Elam,et al.  Low-Temperature Al 2 O 3 Atomic Layer Deposition , 2004 .

[22]  R. Holze,et al.  Cathode materials modified by surface coating for lithium ion batteries , 2006 .

[23]  Tsutomu Ohzuku,et al.  Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries , 2003 .

[24]  Xiao‐Qing Yang,et al.  In situ X-ray diffraction studies on the mechanism of capacity retention improvement by coating at the surface of LiCoO2 , 2007 .

[25]  Steven M. George,et al.  Enhanced Stability of LiCoO2 Cathodes in Lithium-Ion Batteries Using Surface Modification by Atomic Layer Deposition , 2010 .

[26]  M. Whittingham,et al.  Structural and electrochemical behavior of LiMn0.4Ni0.4Co0.2O2 , 2007 .

[27]  E. Cairns,et al.  In situ x-ray absorption spectroscopic study of the Li[Ni1∕3Co1∕3Mn1∕3]O2 cathode material , 2005 .

[28]  D. Aurbach Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries , 2000 .

[29]  H. Sakaebe,et al.  Characterization of the Surface of LiCoO2 Particles Modified by Al and Si Oxide Using Analytical TEM , 2013 .

[30]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[31]  Tsutomu Ohzuku,et al.  Solid-State Chemistry and Electrochemistry of LiCo1 ∕ 3Ni1 ∕ 3Mn1 ∕ 3O2 for Advanced Lithium-Ion Batteries III. Rechargeable Capacity and Cycleability , 2007 .

[32]  E. Cairns,et al.  In situ x-ray absorption spectroscopic study of the Li[Ni1∕3Co1∕3Mn1∕3]O2 cathode material , 2005 .

[33]  P. Parilla,et al.  A Simple and Complete Purification of Single‐Walled Carbon Nanotube Materials , 1999 .

[34]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[35]  K. Amine,et al.  Nanoscale Phase Separation, Cation Ordering, and Surface Chemistry in Pristine Li1.2Ni0.2Mn0.6O2 for Li-Ion Batteries , 2013 .

[36]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[37]  B. Hwang,et al.  In-situ XRD investigations on structure changes of ZrO2-coated LiMn0.5Ni0.5O2 cathode materials during charge , 2007 .

[38]  Rémi Dedryvère,et al.  XPS Study on Al2O3- and AlPO4-Coated LiCoO2 Cathode Material for High-Capacity Li Ion Batteries , 2007 .

[39]  Faisal M. Alamgir,et al.  Comparative Study of the Capacity and Rate Capability of LiNi y Mn y Co1–2y O2 (y = 0.5, 0.45, 0.4, 0.33) , 2011 .

[40]  J. Cabana,et al.  Investigation of the Structural Changes in Li[NiyMnyCo(1−2y)]O2 (y = 0.05) upon Electrochemical Lithium Deintercalation† , 2010 .

[41]  Doron Aurbach,et al.  A comparative study of electrodes comprising nanometric and submicron particles of LiNi0.50Mn0.50O2. LiNi0.33Mn0.33Co0.33O2. and LiNi0.40Mn0.40Co0.20O2 layered compounds , 2009 .

[42]  Li Li,et al.  Structural and Electrochemical Study of Al2O3 and TiO2 Coated Li1.2Ni0.13Mn0.54Co0.13O2 Cathode Material Using ALD , 2013 .

[43]  Xiao‐Qing Yang,et al.  A comparative study on structural changes of LiCo1/3Ni1/3Mn1/3O2 and LiNi0.8Co0.15Al0.05O2 during first charge using in situ XRD , 2006 .

[44]  Steven M. George,et al.  Enhanced Stability of LiCoO2 Cathodes in Lithium-ion Batteries Using Surface Modification by Atomic Layer Deposition , 2010 .

[45]  Yoyo Hinuma,et al.  Effect of High Voltage on the Structure and Electrochemistry of LiNi0.5Mn0.5O2: A Joint Experimental and Theoretical Study , 2006 .