Membrane fouling of submerged membrane bioreactors: impact of mean cell residence time and the contributing factors.

In this study, four bench-scale pre-anoxic submerged membrane bioreactors (MBR) were operated simultaneously at different mean cell residence times (MCRTs) (3, 5, 10, and 20 days) to systematically elucidate the contributing factors of membrane fouling. Severe membrane fouling was first observed in the 3-day followed by the 5-day MCRT MBRs. Minimal membrane fouling was detected in the 10 and 20-day MCRT MBRs. The fouling of microfiltration membrane was not controlled by mixed liquor suspended solids concentration or zeta potential of biomass. Instead, membrane fouling rate increased with increasing soluble microbial products and extracellular polymeric substances concentrations, which both increased with decreasing MCRT. Total organic carbon, protein, carbohydrate, and UV254 absorbance in the mixed liquor supernatant increased with decreasing MCRT and were consistently higher than those of the effluent. Accumulation of carbohydrates rather than proteins in the mixed liquor supernatant was found to decrease with increasing MCRT. Normalized capilliary suction time value rather than the capilliary suction time value would indicate membrane fouling potential of a mixed liquor. Image analysis of the fouled membrane using scanning electron microscope and confocal laser scanning microscope showed that biofilm formation was the cause of membrane fouling.