Global solutions of aggregation equations and other flows with random diffusion

Aggregation equations, such as the parabolic-elliptic Patlak-Keller-Segel model, are known to have an optimal threshold for global existence vs. finite-time blow-up. In particular, if the diffusion is absent, then all smooth solutions with finite second moment can exist only locally in time. Nevertheless, one can ask whether global existence can be restored by adding a suitable noise to the equation, so that the dynamics are now stochastic. Inspired by the work of Buckmaster et al. [BNSW20] showing that, with high probability, the inviscid SQG equation with random diffusion has global classical solutions, we investigate whether suitable random diffusion can restore global existence for a large class of active scalar equations in arbitrary dimension with possibly singular velocity fields. This class includes Hamiltonian flows, such as the SQG equation and its generalizations, and gradient flows, such as those arising in aggregation models. For this class, we show global existence of solutions in Gevrey-type Fourier-Lebesgue spaces with quantifiable high probability.

[1]  N. Masmoudi,et al.  Minimal Mass Blowup Solutions for the Patlak‐Keller‐Segel Equation , 2018, Communications on Pure and Applied Mathematics.

[2]  F. Flandoli,et al.  Delayed blow-up by transport noise , 2020, Communications in Partial Differential Equations.

[3]  Andrea L. Bertozzi,et al.  Swarming Patterns in a Two-Dimensional Kinematic Model for Biological Groups , 2004, SIAM J. Appl. Math..

[4]  Mario Pulvirenti,et al.  Mathematical Theory of Incompressible Nonviscous Fluids , 1993 .

[5]  A. Bertozzi,et al.  A Nonlocal Continuum Model for Biological Aggregation , 2005, Bulletin of mathematical biology.

[6]  Jacob Rubinstein,et al.  A mean-field model of superconducting vortices , 1996, European Journal of Applied Mathematics.

[7]  Darryl D. Holm,et al.  Formation of clumps and patches in self-aggregation of finite-size particles , 2005, nlin/0506020.

[8]  J. Vázquez,et al.  A mean field equation as limit of nonlinear diffusions with fractional Laplacian operators , 2014 .

[9]  Gautam Iyer,et al.  Convection-induced singularity suppression in the Keller-Segel and other non-linear PDEs , 2019, Transactions of the American Mathematical Society.

[10]  T. Laurent,et al.  Lp theory for the multidimensional aggregation equation , 2011 .

[11]  A. Mogilner,et al.  A non-local model for a swarm , 1999 .

[12]  Existence for the α-patch model and the QG sharp front in Sobolev spaces , 2007, math/0701447.

[13]  Mean field limit for Coulomb-type flows , 2018, 1803.08345.

[14]  Piotr Biler,et al.  The Nonlocal Porous Medium Equation: Barenblatt Profiles and Other Weak Solutions , 2013, 1302.7219.

[15]  Emanuele Caglioti,et al.  A Non-Maxwellian Steady Distribution for One-Dimensional Granular Media , 1998 .

[16]  F. Gancedo,et al.  On the local existence and blow-up for generalized SQG patches , 2018, Annals of PDE.

[17]  Kevin M. Passino,et al.  Stability analysis of swarms , 2003, IEEE Trans. Autom. Control..

[18]  F. Golse On the Dynamics of Large Particle Systems in the Mean Field Limit , 2013, 1301.5494.

[19]  Ping Zhang,et al.  Global solutions to vortex density equations arising from sup-conductivity , 2005 .

[20]  K. Swanson,et al.  Spectra of local and nonlocal two-dimensional turbulence , 1994 .

[21]  W. Jäger,et al.  On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .

[22]  José A. Carrillo,et al.  Infinite Time Aggregation for the Critical Patlak-Keller-Segel model in R 2 , 2007 .

[23]  Ping Zhang,et al.  On the hydrodynamic limit of Ginzburg-Landau vortices , 1999 .

[24]  I. Topaloglu,et al.  On global existence and blowup of solutions of Stochastic Keller–Segel type equation , 2021, Nonlinear Differential Equations and Applications NoDEA.

[25]  École d'été de probabilités de Saint-Flour,et al.  Ecole d'été de probabilités de Saint-Flour XIX, 1989 , 1991 .

[26]  Theory for the Multidimensional Aggregation Equation , 2000 .

[27]  F. Flandoli Random perturbation of PDEs and fluid dynamic models , 2011 .

[28]  Charles Fefferman,et al.  Growth of solutions for QG and 2D Euler equations , 2001 .

[29]  E Weinan,et al.  Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity , 1994 .

[30]  L. Ambrosio,et al.  A gradient flow approach to an evolution problem arising in superconductivity , 2008 .

[31]  R. Temam,et al.  Gevrey class regularity for the solutions of the Navier-Stokes equations , 1989 .

[32]  J. Holton Geophysical fluid dynamics. , 1983, Science.

[33]  A. D. Bouard,et al.  FINITE-TIME BLOW-UP IN THE ADDITIVE SUPERCRITICAL STOCHASTIC NONLINEAR SCHRÖDINGER EQUATION : THE REAL NOISE CASE , 2008 .

[34]  G. Staffilani,et al.  The Surface Quasi-geostrophic Equation With Random Diffusion , 2018, International Mathematics Research Notices.

[35]  J. J. L. Velázquez,et al.  Point Dynamics in a Singular Limit of the Keller--Segel Model 1: Motion of the Concentration Regions , 2004, SIAM J. Appl. Math..

[36]  C. Chou The Vlasov equations , 1965 .

[37]  A. Mogilner,et al.  Mathematical Biology Mutual Interactions, Potentials, and Individual Distance in a Social Aggregation , 2003 .

[38]  F. Flandoli,et al.  Full well-posedness of point vortex dynamics corresponding to stochastic 2D Euler equations , 2010, 1004.1407.

[39]  D. Bresch,et al.  Modulated free energy and mean field limit , 2019, Séminaire Laurent Schwartz — EDP et applications.

[40]  J. Vázquez,et al.  Nonlinear Porous Medium Flow with Fractional Potential Pressure , 2010, 1001.0410.

[41]  J. Dolbeault,et al.  Asymptotic Estimates for the Parabolic-Elliptic Keller-Segel Model in the Plane , 2012, 1206.1963.

[42]  P. Lions,et al.  Ordinary differential equations, transport theory and Sobolev spaces , 1989 .

[43]  Giuseppe Toscani,et al.  One-dimensional kinetic models of granular flows , 2000 .

[44]  J. Vázquez,et al.  Regularity of solutions of the fractional porous medium flow , 2012, 1409.8190.

[45]  Joel Lebowitz,et al.  Phase Segregation Dynamics in Particle Systems with Long Range Interactions II: Interface Motion , 1997, SIAM J. Appl. Math..

[46]  Benoît Perthame,et al.  Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions , 2006 .

[47]  Pierre-Emmanuel Jabin,et al.  A review of the mean field limits for Vlasov equations , 2014 .

[48]  J. A. Carrillo,et al.  The derivation of swarming models: Mean-field limit and Wasserstein distances , 2013, 1304.5776.

[49]  P. Jabin,et al.  Quantitative estimates of propagation of chaos for stochastic systems with kernels , 2017 .

[50]  Siming He,et al.  Suppression of Blow-Up in Patlak-Keller-Segel Via Shear Flows , 2016, SIAM J. Math. Anal..

[51]  C. Villani,et al.  Contractions in the 2-Wasserstein Length Space and Thermalization of Granular Media , 2006 .

[52]  L. Ambrosio,et al.  Gradient flow of the Chapman–Rubinstein–Schatzman model for signed vortices , 2011 .

[53]  R. Monneau,et al.  Nonlinear Diffusion of Dislocation Density and Self-Similar Solutions , 2008, 0812.4979.

[54]  M. Hauray WASSERSTEIN DISTANCES FOR VORTICES APPROXIMATION OF EULER-TYPE EQUATIONS , 2009 .

[55]  A. Sznitman Topics in propagation of chaos , 1991 .

[56]  Dongyi Wei Global well-posedness and blow-up for the 2-D Patlak–Keller–Segel equation , 2018 .

[57]  L. Caffarelli,et al.  Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation , 2006, math/0608447.

[58]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[59]  V. Nanjundiah,et al.  Chemotaxis, signal relaying and aggregation morphology. , 1973, Journal of theoretical biology.

[60]  A. Ionescu,et al.  Global Solutions for the Generalized SQG Patch Equation , 2017, Archive for Rational Mechanics and Analysis.

[61]  Peter Constantin,et al.  Behavior of solutions of 2D quasi-geostrophic equations , 1999 .

[62]  J. J. L. Velázquez,et al.  Stability of Some Mechanisms of Chemotactic Aggregation , 2002, SIAM J. Appl. Math..

[63]  F. Poupaud,et al.  Diagonal Defect Measures, Adhesion Dynamics and Euler Equation , 2002 .

[64]  Vlad Vicol,et al.  Nonlinear maximum principles for dissipative linear nonlocal operators and applications , 2011, 1110.0179.

[65]  Andrew J. Majda,et al.  Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar , 1994 .

[66]  Andrea L. Bertozzi,et al.  AGGREGATION AND SPREADING VIA THE NEWTONIAN POTENTIAL: THE DYNAMICS OF PATCH SOLUTIONS , 2012 .

[67]  A. Kiselev,et al.  Suppression of Chemotactic Explosion by Mixing , 2015, 1508.05333.

[68]  Magnus Önnheim,et al.  Propagation of Chaos for a Class of First Order Models with Singular Mean Field Interactions , 2016, SIAM J. Math. Anal..

[69]  Young-Pil Choi,et al.  Classical solutions for fractional porous medium flow , 2021, 2102.01816.

[70]  A. Debussche,et al.  1D quintic nonlinear Schr\"odinger equation with white noise dispersion , 2010, 1010.4011.

[71]  Mitia Duerinckx,et al.  Mean-Field Limits for Some Riesz Interaction Gradient Flows , 2015, SIAM J. Math. Anal..

[72]  J. Carrillo,et al.  Exponential Convergence Towards Stationary States for the 1D Porous Medium Equation with Fractional Pressure , 2014, 1407.4392.

[73]  Giambattista Giacomin,et al.  Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits , 1997, comp-gas/9705001.

[74]  F. Poupaud,et al.  High-field Limit for the Vlasov-poisson-fokker-planck System , 2022 .

[75]  E. Mainini Well-posedness for a mean field model of Ginzburg–Landau vortices with opposite degrees , 2012 .

[76]  W. Wolibner Un theorème sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment long , 1933 .

[77]  F. Flandoli,et al.  Well-posedness of the transport equation by stochastic perturbation , 2008, 0809.1310.

[78]  Macroscopic evolution of particle systems with short- and long-range interactions , 2000, cond-mat/0003259.

[79]  V. I. Yudovich,et al.  Non-stationary flow of an ideal incompressible liquid , 1963 .

[80]  J. Vázquez,et al.  Regularity of solutions of the fractional porous medium flow with exponent 1/2 , 2014 .

[81]  P. Lions,et al.  On the Cauchy problem for Boltzmann equations: global existence and weak stability , 1989 .

[82]  J. J. L. Velázquez,et al.  Point Dynamics in a Singular Limit of the Keller--Segel Model 2: Formation of the Concentration Regions , 2004, SIAM J. Appl. Math..

[83]  Steve Shkoller,et al.  Nonuniqueness of Weak Solutions to the SQG Equation , 2016, Communications on Pure and Applied Mathematics.

[84]  Si-ming He,et al.  Small-scale creation for solutions of the SQG equation , 2019, Duke Mathematical Journal.

[85]  E. Caglioti,et al.  A kinetic equation for granular media , 2009 .

[86]  F. Flandoli,et al.  High mode transport noise improves vorticity blow-up control in 3D Navier–Stokes equations , 2019, Probability Theory and Related Fields.

[87]  J. Wendelberger Adventures in Stochastic Processes , 1993 .

[88]  Luis Caffarelli,et al.  Asymptotic behaviour of a porous medium equation with fractional diffusion , 2010, 1004.1096.

[89]  M. Gubinelli,et al.  Nonlinear PDEs with Modulated Dispersion I: Nonlinear Schrödinger Equations , 2013, 1303.0822.

[90]  Sylvia Serfaty,et al.  Mean-field limits of Riesz-type singular flows with possible multiplicative transport noise , 2021 .

[91]  V. Vicol,et al.  Local and global existence of smooth solutions for the stochastic Euler equations with multiplicative noise , 2011, 1111.1451.

[92]  P. Constantin,et al.  Generalized surface quasi‐geostrophic equations with singular velocities , 2011, 1101.3537.

[93]  E. Mainini,et al.  A Gradient Flow Approach to the Porous Medium Equation with Fractional Pressure , 2016, 1606.06787.

[94]  Arnaud Debussche,et al.  Blow-up for the stochastic nonlinear Schrödinger equation with multiplicative noise , 2005 .

[95]  E. Hölder Über die unbeschränkte Fortsetzbarkeit einer stetigen ebenen Bewegung in einer unbegrenzten inkompressiblen Flüssigkeit , 1933 .

[96]  C. Patlak Random walk with persistence and external bias , 1953 .

[97]  F. Flandoli,et al.  Stochastic ODEs and stochastic linear PDEs with critical drift: regularity, duality and uniqueness , 2014, Electronic Journal of Probability.