Bayesian calibration with summary statistics for the prediction of xenon diffusion in UO2 nuclear fuel

[1]  D. Bernholdt,et al.  Modeling mesoscale fission gas behavior in UO2 by directly coupling the phase field method to spatially resolved cluster dynamics , 2022, Materials Theory.

[2]  X. Liu,et al.  Atomistic and cluster dynamics modeling of fission gas (Xe) diffusivity in TRISO fuel kernels , 2022, Journal of Nuclear Materials.

[3]  Benjamin W. Spencer,et al.  BISON: A Flexible Code for Advanced Simulation of the Performance of Multiple Nuclear Fuel Forms , 2021 .

[4]  R. Perriot,et al.  Cluster dynamics simulation of xenon diffusion during irradiation in UO2 , 2020 .

[5]  Romain Perriot,et al.  Cluster dynamics simulation of uranium self-diffusion during irradiation in UO2 , 2019 .

[6]  Roy H. Stogner,et al.  MOOSE: Enabling Massively Parallel Multiphysics Simulation , 2019, SoftwareX.

[7]  B. Uberuaga,et al.  Atomistic modeling of out-of-pile xenon diffusion by vacancy clusters in UO2 , 2019, Journal of Nuclear Materials.

[8]  J. Hales,et al.  A model describing intra-granular fission gas behaviour in oxide fuel for advanced engineering tools , 2018 .

[9]  B. Uberuaga,et al.  Simulation of radiation driven fission gas diffusion in UO 2 , ThO 2 and PuO 2 , 2016 .

[10]  Christopher R. Stanek,et al.  Multiscale simulation of xenon diffusion and grain boundary segregation in UO 2 , 2015 .

[11]  Xiang-Yang Liu,et al.  Atomistic modeling of intrinsic and radiation-enhanced fission gas (Xe) diffusion in UO2±x: Implications for nuclear fuel performance modeling , 2014 .

[12]  J. Crocombette,et al.  Diffusion model of the non-stoichiometric uranium dioxide , 2013 .

[13]  S. V. D. Berghe,et al.  Chromia doped UO2 fuel: Investigation of the lattice parameter , 2012 .

[14]  David Andrs,et al.  Multidimensional multiphysics simulation of nuclear fuel behavior , 2012 .

[15]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[16]  M. Verwerft,et al.  On the solution and migration of single Xe atoms in uranium dioxide – An interatomic potentials study , 2010 .

[17]  Habib N. Najm,et al.  Data-free inference of the joint distribution of uncertain model parameters , 2010, J. Comput. Phys..

[18]  Olivier P. Le Maître,et al.  Polynomial chaos expansion for sensitivity analysis , 2009, Reliab. Eng. Syst. Saf..

[19]  Donald R. Olander,et al.  Nuclear fuels - Present and future , 2009 .

[20]  Kwangheon Park,et al.  Atomic diffusion mechanism of Xe in UO2 , 2008 .

[21]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[22]  Benjamin S. Kirk,et al.  Library for Parallel Adaptive Mesh Refinement / Coarsening Simulations , 2006 .

[23]  J. Rosenthal,et al.  On adaptive Markov chain Monte Carlo algorithms , 2005 .

[24]  Habib N. Najm,et al.  Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes , 2005, SIAM J. Sci. Comput..

[25]  H. Najm,et al.  Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection , 2003 .

[26]  R. Ghanem,et al.  A stochastic projection method for fluid flow. I: basic formulation , 2001 .

[27]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[28]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[29]  Roger Ghanem,et al.  Ingredients for a general purpose stochastic finite elements implementation , 1999 .

[30]  Wilmar Barbosa Ferraz,et al.  First study of uranium self-diffusion in UO2 by SIMS. , 1998 .

[31]  C. R. A. Catlow,et al.  The stability of fission products in uranium dioxide , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[32]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[33]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[34]  M. Schervish,et al.  Characterization of Externally Bayesian Pooling Operators , 1986 .

[35]  K. Une,et al.  Oxygen potentials of (U,Nd)O2 ± x solid solutions in the temperature range 1000–1500°C , 1983 .

[36]  K. Une,et al.  Thermodynamic properties of nonstoichiometric urania-gadolinia solid solutions in the temperature range 700–1100° C , 1982 .

[37]  F. A. Johnson,et al.  The diffusion coefficients of gaseous and volatile species during the irradiation of uranium dioxide , 1982 .

[38]  C. Catlow,et al.  Fission gas diffusion in uranium dioxide , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[39]  C. Baker,et al.  The fission gas bubble distribution in uranium dioxide from high temperature irradiated sghwr fuel pins , 1977 .

[40]  N. A Javed,et al.  Thermodynamic study of hypostoichiometric urania , 1972 .

[41]  W. Miekeley,et al.  Effect of stoichiometry on diffusion of xenon in UO2 , 1972 .

[42]  V. Wheeler,et al.  Thermodynamic and composition changes in UO2±x (x< 0.005) at 1950 K , 1972 .

[43]  V. Wheeler High temperature thermodynamic data for UO2−x , 1971 .

[44]  R. J. Bones,et al.  High temperature thermodynamic data for UO2±x , 1968 .

[45]  K. Hagemark,et al.  Equilibrium oxygen pressures over the nonstoicheiometric uranium oxides UO2+x and U3O8−z at higher temperatures , 1966 .

[46]  D. Davies,et al.  THE EMISSION OF XENON-133 FROM LIGHTLY IRRADIATED URANIUM DIOXIDE SPHEROIDS AND POWDERS , 1963 .

[47]  S. Aronson,et al.  Nonstoichiometry in Uranium Dioxide , 1958 .

[48]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[49]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[50]  Habib N. Najm,et al.  Estimating the joint distribution of rate parameters across multiple reactions in the absence of experimental data , 2019, Proceedings of the Combustion Institute.

[51]  C. Walker,et al.  Fission gas release from UO2 nuclear fuel: A review , 2019, Journal of Nuclear Materials.

[52]  H. Najm,et al.  Inference of reaction rate parameters based on summary statistics from experiments , 2017 .

[53]  Habib N. Najm,et al.  Data free inference with processed data products , 2016, Stat. Comput..

[54]  Khachik Sargsyan,et al.  Surrogate Models for Uncertainty Propagation and Sensitivity Analysis , 2015 .

[55]  Cosmin Safta,et al.  Uncertainty Quantification Toolkit (UQTk) , 2015 .

[56]  Peter E. Thornton,et al.  DIMENSIONALITY REDUCTION FOR COMPLEX MODELS VIA BAYESIAN COMPRESSIVE SENSING , 2014 .

[57]  R. D. Berry,et al.  DATA-FREE INFERENCE OF UNCERTAIN PARAMETERS IN CHEMICAL MODELS , 2014 .

[58]  Habib N. Najm,et al.  Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .

[59]  A. Kleywegt,et al.  Stochastic Optimization , 2003 .

[60]  John H. Harding,et al.  The calculation of defect parameters in UO2 , 1986 .

[61]  H. Matzke,et al.  Gas release mechanisms in UO2—a critical review , 1980 .

[62]  O. Ernst,et al.  ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .