Bayesian calibration with summary statistics for the prediction of xenon diffusion in UO2 nuclear fuel
暂无分享,去创建一个
H. Najm | K. Sargsyan | David Andersson | M. Cooper | C. Matthews | T. Casey | P. Robbe | L. Bonnet | Pieterjan Robbe
[1] D. Bernholdt,et al. Modeling mesoscale fission gas behavior in UO2 by directly coupling the phase field method to spatially resolved cluster dynamics , 2022, Materials Theory.
[2] X. Liu,et al. Atomistic and cluster dynamics modeling of fission gas (Xe) diffusivity in TRISO fuel kernels , 2022, Journal of Nuclear Materials.
[3] Benjamin W. Spencer,et al. BISON: A Flexible Code for Advanced Simulation of the Performance of Multiple Nuclear Fuel Forms , 2021 .
[4] R. Perriot,et al. Cluster dynamics simulation of xenon diffusion during irradiation in UO2 , 2020 .
[5] Romain Perriot,et al. Cluster dynamics simulation of uranium self-diffusion during irradiation in UO2 , 2019 .
[6] Roy H. Stogner,et al. MOOSE: Enabling Massively Parallel Multiphysics Simulation , 2019, SoftwareX.
[7] B. Uberuaga,et al. Atomistic modeling of out-of-pile xenon diffusion by vacancy clusters in UO2 , 2019, Journal of Nuclear Materials.
[8] J. Hales,et al. A model describing intra-granular fission gas behaviour in oxide fuel for advanced engineering tools , 2018 .
[9] B. Uberuaga,et al. Simulation of radiation driven fission gas diffusion in UO 2 , ThO 2 and PuO 2 , 2016 .
[10] Christopher R. Stanek,et al. Multiscale simulation of xenon diffusion and grain boundary segregation in UO 2 , 2015 .
[11] Xiang-Yang Liu,et al. Atomistic modeling of intrinsic and radiation-enhanced fission gas (Xe) diffusion in UO2±x: Implications for nuclear fuel performance modeling , 2014 .
[12] J. Crocombette,et al. Diffusion model of the non-stoichiometric uranium dioxide , 2013 .
[13] S. V. D. Berghe,et al. Chromia doped UO2 fuel: Investigation of the lattice parameter , 2012 .
[14] David Andrs,et al. Multidimensional multiphysics simulation of nuclear fuel behavior , 2012 .
[15] Andrew Gelman,et al. Handbook of Markov Chain Monte Carlo , 2011 .
[16] M. Verwerft,et al. On the solution and migration of single Xe atoms in uranium dioxide – An interatomic potentials study , 2010 .
[17] Habib N. Najm,et al. Data-free inference of the joint distribution of uncertain model parameters , 2010, J. Comput. Phys..
[18] Olivier P. Le Maître,et al. Polynomial chaos expansion for sensitivity analysis , 2009, Reliab. Eng. Syst. Saf..
[19] Donald R. Olander,et al. Nuclear fuels - Present and future , 2009 .
[20] Kwangheon Park,et al. Atomic diffusion mechanism of Xe in UO2 , 2008 .
[21] Saltelli Andrea,et al. Global Sensitivity Analysis: The Primer , 2008 .
[22] Benjamin S. Kirk,et al. Library for Parallel Adaptive Mesh Refinement / Coarsening Simulations , 2006 .
[23] J. Rosenthal,et al. On adaptive Markov chain Monte Carlo algorithms , 2005 .
[24] Habib N. Najm,et al. Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes , 2005, SIAM J. Sci. Comput..
[25] H. Najm,et al. Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection , 2003 .
[26] R. Ghanem,et al. A stochastic projection method for fluid flow. I: basic formulation , 2001 .
[27] H. Haario,et al. An adaptive Metropolis algorithm , 2001 .
[28] I. Sobola,et al. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .
[29] Roger Ghanem,et al. Ingredients for a general purpose stochastic finite elements implementation , 1999 .
[30] Wilmar Barbosa Ferraz,et al. First study of uranium self-diffusion in UO2 by SIMS. , 1998 .
[31] C. R. A. Catlow,et al. The stability of fission products in uranium dioxide , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.
[32] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[33] Jorge Nocedal,et al. On the limited memory BFGS method for large scale optimization , 1989, Math. Program..
[34] M. Schervish,et al. Characterization of Externally Bayesian Pooling Operators , 1986 .
[35] K. Une,et al. Oxygen potentials of (U,Nd)O2 ± x solid solutions in the temperature range 1000–1500°C , 1983 .
[36] K. Une,et al. Thermodynamic properties of nonstoichiometric urania-gadolinia solid solutions in the temperature range 700–1100° C , 1982 .
[37] F. A. Johnson,et al. The diffusion coefficients of gaseous and volatile species during the irradiation of uranium dioxide , 1982 .
[38] C. Catlow,et al. Fission gas diffusion in uranium dioxide , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[39] C. Baker,et al. The fission gas bubble distribution in uranium dioxide from high temperature irradiated sghwr fuel pins , 1977 .
[40] N. A Javed,et al. Thermodynamic study of hypostoichiometric urania , 1972 .
[41] W. Miekeley,et al. Effect of stoichiometry on diffusion of xenon in UO2 , 1972 .
[42] V. Wheeler,et al. Thermodynamic and composition changes in UO2±x (x< 0.005) at 1950 K , 1972 .
[43] V. Wheeler. High temperature thermodynamic data for UO2−x , 1971 .
[44] R. J. Bones,et al. High temperature thermodynamic data for UO2±x , 1968 .
[45] K. Hagemark,et al. Equilibrium oxygen pressures over the nonstoicheiometric uranium oxides UO2+x and U3O8−z at higher temperatures , 1966 .
[46] D. Davies,et al. THE EMISSION OF XENON-133 FROM LIGHTLY IRRADIATED URANIUM DIOXIDE SPHEROIDS AND POWDERS , 1963 .
[47] S. Aronson,et al. Nonstoichiometry in Uranium Dioxide , 1958 .
[48] E. Jaynes. Information Theory and Statistical Mechanics , 1957 .
[49] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[50] Habib N. Najm,et al. Estimating the joint distribution of rate parameters across multiple reactions in the absence of experimental data , 2019, Proceedings of the Combustion Institute.
[51] C. Walker,et al. Fission gas release from UO2 nuclear fuel: A review , 2019, Journal of Nuclear Materials.
[52] H. Najm,et al. Inference of reaction rate parameters based on summary statistics from experiments , 2017 .
[53] Habib N. Najm,et al. Data free inference with processed data products , 2016, Stat. Comput..
[54] Khachik Sargsyan,et al. Surrogate Models for Uncertainty Propagation and Sensitivity Analysis , 2015 .
[55] Cosmin Safta,et al. Uncertainty Quantification Toolkit (UQTk) , 2015 .
[56] Peter E. Thornton,et al. DIMENSIONALITY REDUCTION FOR COMPLEX MODELS VIA BAYESIAN COMPRESSIVE SENSING , 2014 .
[57] R. D. Berry,et al. DATA-FREE INFERENCE OF UNCERTAIN PARAMETERS IN CHEMICAL MODELS , 2014 .
[58] Habib N. Najm,et al. Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .
[59] A. Kleywegt,et al. Stochastic Optimization , 2003 .
[60] John H. Harding,et al. The calculation of defect parameters in UO2 , 1986 .
[61] H. Matzke,et al. Gas release mechanisms in UO2—a critical review , 1980 .
[62] O. Ernst,et al. ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .