Sustainable carbon materials.

Carbon-based structures are the most versatile materials used in the modern field of renewable energy (i.e., in both generation and storage) and environmental science (e.g., purification/remediation). However, there is a need and indeed a desire to develop increasingly more sustainable variants of classical carbon materials (e.g., activated carbons, carbon nanotubes, carbon aerogels, etc.), particularly when the whole life cycle is considered (i.e., from precursor "cradle" to "green" manufacturing and the product end-of-life "grave"). In this regard, and perhaps mimicking in some respects the natural carbon cycles/production, utilization of natural, abundant and more renewable precursors, coupled with simpler, lower energy synthetic processes which can contribute in part to the reduction in greenhouse gas emissions or the use of toxic elements, can be considered as crucial parameters in the development of sustainable materials manufacturing. Therefore, the synthesis and application of sustainable carbon materials are receiving increasing levels of interest, particularly as application benefits in the context of future energy/chemical industry are becoming recognized. This review will introduce to the reader the most recent and important progress regarding the production of sustainable carbon materials, whilst also highlighting their application in important environmental and energy related fields.

[1]  H. García,et al.  Preparation of graphene quantum dots from pyrolyzed alginate. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[2]  Jun-Jie Zhu,et al.  Gold Nanoparticle–Colloidal Carbon Nanosphere Hybrid Material: Preparation, Characterization, and Application for an Amplified Electrochemical Immunoassay , 2008 .

[3]  Geert-Jan Witkamp,et al.  Natural deep eutectic solvents as a new extraction media for phenolic metabolites in Carthamus tinctorius L. , 2013, Analytical chemistry.

[4]  Hui Peng,et al.  Simple Aqueous Solution Route to Luminescent Carbogenic Dots from Carbohydrates , 2009 .

[5]  D. Su,et al.  Mount‐Etna‐Lava‐Supported Nanocarbons for Oxidative Dehydrogenation Reactions , 2008 .

[6]  Jiaqi Huang,et al.  Hierarchical Nanocomposites Derived from Nanocarbons and Layered Double Hydroxides ‐ Properties, Synthesis, and Applications , 2012 .

[7]  M. Streat,et al.  Sorption of phenol and para-chlorophenol from water using conventional and novel activated carbons , 1995 .

[8]  James H. Clark,et al.  Green chemistry for the second generation biorefinery—sustainable chemical manufacturing based on biomass , 2007 .

[9]  Nicole D Berge,et al.  Hydrothermal carbonization of municipal waste streams. , 2011, Environmental science & technology.

[10]  C. Giordano,et al.  From paper to structured carbon electrodes by inkjet printing. , 2013, Angewandte Chemie.

[11]  A. Szczurek,et al.  Highly mesoporous organic aerogels derived from soy and tannin , 2012 .

[12]  E. Dinjus,et al.  Hydrothermal Carbonization – 1. Influence of Lignin in Lignocelluloses , 2011 .

[13]  Bin Wang,et al.  Bacterial Cellulose : A Versatile Support for Lithium Ion Battery Anode Materials , 2013 .

[14]  A. Szczurek,et al.  Emulsion-templated porous carbon monoliths derived from tannins , 2014 .

[15]  Haiwoong Park,et al.  Catalytic Decomposition of Lignin Model Compounds to Aromatics over Acidic Catalysts , 2013, Catalysis Surveys from Asia.

[16]  S. Kent Hoekman,et al.  Hydrothermal Carbonization (HTC) of Lignocellulosic Biomass , 2011 .

[17]  Abdul Latif Ahmad,et al.  ADSORPTION OF BASIC DYE (METHYLENE BLUE) ONTO ACTIVATED CARBON PREPARED FROM RATTAN SAWDUST , 2007 .

[18]  B. Alonso,et al.  Chitin-silica nanocomposites by self-assembly. , 2010, Angewandte Chemie.

[19]  Robin J. White,et al.  Carbohydrate-derived hydrothermal carbons: a thorough characterization study. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[20]  Y. Yagcı,et al.  Facile polymer functionalization of hydrothermal-carbonization-derived carbons. , 2013, Macromolecular rapid communications.

[21]  Joachim Maier,et al.  Lithium Storage in Carbon Nanostructures , 2009, Advanced materials.

[22]  M. Feather,et al.  Chemistry of Amadori rearrangement products: analysis, synthesis, kinetics, reactions, and spectroscopic properties. , 1994, Critical reviews in food science and nutrition.

[23]  Ashley J. Wilson,et al.  Starbons: new starch-derived mesoporous carbonaceous materials with tunable properties. , 2006, Angewandte Chemie.

[24]  V. Urban,et al.  Evidence for Complex Molecular Architectures for Solvent-Extracted Lignins. , 2012, ACS macro letters.

[25]  F. Rodríguez-Reinoso,et al.  The role of carbon materials in heterogeneous catalysis , 1998 .

[26]  Markus Antonietti,et al.  Structural Characterization of Hydrothermal Carbon Spheres by Advanced Solid-State MAS C-13 NMR Investigations , 2009 .

[27]  Zhong Li,et al.  Improvement of CO2 adsorption on ZIF-8 crystals modified by enhancing basicity of surface , 2011 .

[28]  E. Berl,et al.  Über das Verhalten der Cellulose bei der Druckerhitzung mit Wasser , 1928 .

[29]  S. Samdarshi,et al.  A green precursor for carbon nanotube synthesis , 2011 .

[30]  A. Szczurek,et al.  Carbon meringues derived from flavonoid tannins , 2013 .

[31]  Dongyuan Zhao,et al.  Synthesis of replica mesostructures by the nanocasting strategy , 2005 .

[32]  R. Pekala,et al.  Organic aerogels from the polycondensation of resorcinol with formaldehyde , 1989 .

[33]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[34]  E. Morallón,et al.  Highly dispersed platinum nanoparticles on carbon nanocoils and their electrocatalytic performance for fuel cell reactions , 2009 .

[35]  S. Bose,et al.  Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene: an environmentally friendly method , 2012 .

[36]  Shuhong Yu,et al.  PVA-Assisted Hydrothermal Synthesis of Copper@Carbonaceous Submicrocables: Thermal Stability, and Their Conversion into Amorphous Carbonaceous Submicrotubes , 2007 .

[37]  Arne Thomas,et al.  Functional Carbon Materials From Ionic Liquid Precursors , 2012 .

[38]  I. Smirnova,et al.  Use of supercritical fluid technology for the production of tailor-made aerogel particles for delivery systems , 2013 .

[39]  J. Clark,et al.  Water-tolerant Ru-Starbon® materials for the hydrogenation of organic acids in aqueous ethanol , 2010 .

[40]  D. Eder Carbon nanotube-inorganic hybrids. , 2010, Chemical reviews.

[41]  D. Su,et al.  Hierarchically structured carbon: synthesis of carbon nanofibers nested inside or immobilized onto modified activated carbon. , 2005, Angewandte Chemie.

[42]  M. O'keeffe,et al.  Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs , 2008, Nature.

[43]  J. Clark,et al.  Tuneable porous carbonaceous materials from renewable resources. , 2009, Chemical Society reviews.

[44]  M. Gutiérrez,et al.  Resorcinol-Based Deep Eutectic Solvents as Both Carbonaceous Precursors and Templating Agents in the Synthesis of Hierarchical Porous Carbon Monoliths , 2010 .

[45]  D. Su,et al.  The morphology, porosity and productivity control of carbon nanofibers or nanotubes on modified activated carbon , 2007 .

[46]  Zhao Zhang,et al.  Resonant frequency of gold/polycarbonate hybrid nano resonators fabricated on plastics via nano-transfer printing , 2011, Nanoscale research letters.

[47]  M. Gutiérrez,et al.  PPO15-PEO22-PPO15block copolymer assisted synthesis of monolithic macro- and microporous carbon aerogels exhibiting high conductivity and remarkable capacitance , 2009 .

[48]  Dinesh Mohan,et al.  Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. , 2006, Journal of hazardous materials.

[49]  H. Tamon,et al.  Control of mesoporous properties of carbon cryogels prepared from wattle tannin and furfural , 2008 .

[50]  Qiang Zhang,et al.  Dissolved carbon controls the initial stages of nanocarbon growth. , 2011, Angewandte Chemie.

[51]  J. Mao,et al.  Chemical Structures of Swine-Manure Chars Produced under Different Carbonization Conditions Investigated by Advanced Solid-State 13C Nuclear Magnetic Resonance (NMR) Spectroscopy† , 2011 .

[52]  Byeong‐Su Kim,et al.  Sweet nanodot for biomedical imaging: carbon dot derived from xylitol , 2014 .

[53]  L. Avérous,et al.  Chemical modification of lignins: Towards biobased polymers , 2014 .

[54]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[55]  Ya‐Ping Sun,et al.  CYTOTOXICITY EVALUATIONS OF FLUORESCENT CARBON NANOPARTICLES , 2010 .

[56]  V. Pol,et al.  Remediating plastic waste into carbon nanotubes. , 2010, Journal of environmental monitoring : JEM.

[57]  M. Jaroniec,et al.  Colloidal templating synthesis and adsorption characteristics of microporous–mesoporous carbons from Kraft lignin , 2013 .

[58]  R. Schlögl,et al.  Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. , 2008, Angewandte Chemie.

[59]  Sebastian Fiechter,et al.  Nature of the Catalytic Centers of Porphyrin-Based Electrocatalysts for the ORR: A Correlation of Kinetic Current Density with the Site Density of Fe−N4 Centers , 2008 .

[60]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[61]  I. Arends,et al.  Are Natural Deep Eutectic Solvents the Missing Link in Understanding Cellular Metabolism and Physiology?[W] , 2011, Plant Physiology.

[62]  Robin J. White,et al.  Borax‐Mediated Formation of Carbon Aerogels from Glucose , 2012 .

[63]  C. Li,et al.  Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. , 2013, Angewandte Chemie.

[64]  Liquan Chen,et al.  Monodispersed hard carbon spherules with uniform nanopores , 2001 .

[65]  A. Szczurek,et al.  The use of tannin to prepare carbon gels. Part I: Carbon aerogels , 2011 .

[66]  Qiang Wang,et al.  CO2 capture by solid adsorbents and their applications: current status and new trends , 2011 .

[67]  B. K. Gupta,et al.  Transforming collagen wastes into doped nanocarbons for sustainable energy applications , 2012 .

[68]  J. Clark,et al.  Efficient aqueous hydrogenation of biomass platform molecules using supported metal nanoparticles on Starbons. , 2009, Chemical communications.

[69]  Andrew G. Glen,et al.  APPL , 2001 .

[70]  A. Elgsaeter,et al.  Swelling of covalently crosslinked alginate gels: influence of ionic solutes and nonpolar solvents , 1993 .

[71]  F. Renzo,et al.  Aerogel materials from marine polysaccharides , 2008 .

[72]  Takashi Jimbo,et al.  Carbon nanotubes by spray pyrolysis of turpentine oil at different temperatures and their studies , 2006 .

[73]  Yadong Li,et al.  Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. , 2004, Angewandte Chemie.

[74]  S. Caveney,et al.  SCARABAEID BEETLE EXOCUTICLE AS AN OPTICAL ANALOGUE OF CHOLESTERIC LIQUID CRYSTALS , 1969, Biological reviews of the Cambridge Philosophical Society.

[75]  J. Clark,et al.  Tuneable mesoporous materials from alpha-D-polysaccharides. , 2008, ChemSusChem.

[76]  L. Luo,et al.  Large-scale fabrication of flexible silver/cross-linked poly(vinyl alcohol) coaxial nanocables by a facile solution approach. , 2005, Journal of the American Chemical Society.

[77]  A. B. Fuertes,et al.  Saccharide-based graphitic carbon nanocoils as supports for PtRu nanoparticles for methanol electrooxidation , 2007 .

[78]  Dingcai Wu,et al.  Construction of a hierarchical architecture in a wormhole-like mesostructure for enhanced mass transport. , 2011, Physical chemistry chemical physics : PCCP.

[79]  D. Petridis,et al.  Carbon Nanotube Growth on a Swellable Clay Matrix , 2005 .

[80]  D. Su The use of natural materials in nanocarbon synthesis. , 2009, ChemSusChem.

[81]  H. Ted Davis,et al.  Hydrothermal carbonization of microalgae , 2010 .

[82]  Jiaqi Huang,et al.  The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. , 2013, Small.

[83]  James M. Tour,et al.  Growth of graphene from food, insects, and waste. , 2011, ACS nano.

[84]  Y. Sakka,et al.  Doped-carbon electrocatalysts with trimodal porosity from a homogeneous polypeptide gel , 2013 .

[85]  R. Jasinski,et al.  A New Fuel Cell Cathode Catalyst , 1964, Nature.

[86]  D. Su,et al.  Facile synthesis of carbon nanotube/natural bentonite composites as a stable catalyst for styrene synthesis. , 2008, Chemical communications.

[87]  F. Kang,et al.  The use of asphalt emulsions as a binder for the preparation of polycrystalline graphite , 2013 .

[88]  F. Du,et al.  Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction , 2009, Science.

[89]  Mi-Hee Kim,et al.  Biocompatible reduced graphene oxide prepared by using dextran as a multifunctional reducing agent. , 2011, Chemical communications.

[90]  M. Gutiérrez,et al.  Block-Copolymer assisted synthesis of hierarchical carbon monoliths suitable as supercapacitor electrodes , 2010 .

[91]  Jie Chang,et al.  Characterization of Hydrochars Produced by Hydrothermal Carbonization of Lignin, Cellulose, d-Xylose, and Wood Meal , 2012 .

[92]  Markus Antonietti,et al.  Hydrothermal carbon from biomass : a comparison of the local structure from poly- to monosaccharides and pentoses/hexoses. , 2008 .

[93]  Raymond K. Rasheed,et al.  Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. , 2004, Journal of the American Chemical Society.

[94]  F. Bergius Production of hydrogen from water and coal from cellulose at high temperatures and pressures , 1913 .

[95]  S. Kazarian,et al.  Bacterial cellulose as source for activated nanosized carbon for electric double layer capacitors , 2012, Journal of Materials Science.

[96]  M. Titirici,et al.  Hydrothermal carbon from biomass: structural differences between hydrothermal and pyrolyzed carbons via 13C solid state NMR. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[97]  Kevin E. Shopsowitz,et al.  Mesoporous nitrogen-doped carbon from nanocrystalline chitin assemblies , 2014 .

[98]  J. Silvestre-Albero,et al.  Mesoporous materials for clean energy technologies. , 2014, Chemical Society reviews.

[99]  P. Bogdanoff,et al.  Catalysts for oxygen reduction from heat-treated carbon-supported iron phenantroline complexes , 2002 .

[100]  Single-walled carbon nanotubes grown on natural minerals , 2006 .

[101]  Linghui Yu,et al.  Hollow Carbon Nanospheres with Superior Rate Capability for Sodium‐Based Batteries , 2012 .

[102]  M. MacLachlan,et al.  Biomimetic Chiral Nematic Mesoporous Materials from Crab Cuticles , 2014 .

[103]  M. Gutiérrez,et al.  Deep eutectic solvents in polymerizations: a greener alternative to conventional syntheses. , 2014, ChemSusChem.

[104]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[105]  Shaojun Dong,et al.  Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. , 2010, ACS nano.

[106]  Shuichi Suzuki,et al.  Enhancement of oxygen reduction activity with addition of carbon support for non-precious metal nitr , 2011 .

[107]  E. Forgács Retention characteristics and practical applications of carbon sorbents. , 2002, Journal of chromatography. A.

[108]  Wen‐Cui Li,et al.  Rapid Synthesis of Nitrogen‐Doped Porous Carbon Monolith for CO2 Capture , 2010, Advanced materials.

[109]  Xiaoliang Xu,et al.  Adsorption separation of carbon dioxide, methane, and nitrogen on Hβ and Na-exchanged β-zeolite , 2008 .

[110]  Sarit K. Das,et al.  Graphene from sugar and its application in water purification. , 2012, ACS applied materials & interfaces.

[111]  Z. Schnepp Biopolymers as a flexible resource for nanochemistry. , 2013, Angewandte Chemie.

[112]  Jiaqi Huang,et al.  Vertically aligned carbon nanotube arrays grown on a lamellar catalyst by fluidized bed catalytic chemical vapor deposition , 2009 .

[113]  Sheila N. Baker,et al.  Luminescent carbon nanodots: emergent nanolights. , 2010, Angewandte Chemie.

[114]  E. Berl,et al.  Über die Entstehung der Kohlen , 1930 .

[115]  M. Gutiérrez,et al.  Phosphate-functionalized carbon monoliths from deep eutectic solvents and their use as monolithic electrodes in supercapacitors. , 2012, ChemSusChem.

[116]  Tammy Y. Olson,et al.  Synthesis of graphene aerogel with high electrical conductivity. , 2010, Journal of the American Chemical Society.

[117]  Lei Zhang,et al.  A review of anode catalysis in the direct methanol fuel cell , 2006 .

[118]  D G Gray,et al.  Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. , 1992, International journal of biological macromolecules.

[119]  F. Bergius Beiträge zur Theorie der Kohleentstehung , 2005, Naturwissenschaften.

[120]  M. Izquierdo,et al.  Nitrogen-doped carbon materials produced from hydrothermally treated tannin , 2012 .

[121]  D. E. Akin Plant cell wall aromatics: influence on degradation of biomass , 2008 .

[122]  Mohamad Rusop,et al.  Synthesis of vertically aligned carbon nanotubes using natural palm oil as carbon precursor , 2009 .

[123]  Guoliang Zhang,et al.  Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation , 2008 .

[124]  J. Dahn,et al.  The Electrochemical Reaction of Li with Amorphous Si-Sn Alloys , 2003 .

[125]  M. MacLachlan,et al.  Large, Crack‐Free Freestanding Films with Chiral Nematic Structures , 2013 .

[126]  Ke Yang,et al.  Tunable hierarchical porosity from self-assembled chitin–silica nano-composites , 2011 .

[127]  Robin J. White,et al.  Naturally inspired nitrogen doped porous carbon , 2009 .

[128]  A. J. Hunt,et al.  A natural template approach to mesoporous carbon spheres for use as green chromatographic stationary phases , 2014 .

[129]  T. Maiyalagan,et al.  Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications , 2012 .

[130]  H. Tamon,et al.  Preparation of carbon cryogels from wattle tannin and furfural , 2007 .

[131]  Huyen N. Dinh,et al.  Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports , 2010 .

[132]  J. Clark,et al.  Always look on the "light" side of life: sustainable carbon aerogels. , 2014, ChemSusChem.

[133]  A. J. Hunt,et al.  Investigating the structure of biomass-derived non-graphitizing mesoporous carbons by electron energy loss spectroscopy in the transmission electron microscope and X-ray photoelectron spectroscopy , 2014 .

[134]  Satishchandra Ogale,et al.  From dead leaves to high energy density supercapacitors , 2013 .

[135]  A. B. Fuertes,et al.  Hydrothermal carbonization of biomass as a route for the sequestration of CO2: chemical and structural properties of the carbonized products. , 2011 .

[136]  J. Clark,et al.  Pectin-derived porous materials. , 2010, Chemistry.

[137]  Jiyoung Jung,et al.  A facile route to fabricate stable reduced graphene oxide dispersions in various media and their transparent conductive thin films. , 2012, Journal of colloid and interface science.

[138]  Xiaoyun Qin,et al.  Hydrothermal Treatment of Grass: A Low‐Cost, Green Route to Nitrogen‐Doped, Carbon‐Rich, Photoluminescent Polymer Nanodots as an Effective Fluorescent Sensing Platform for Label‐Free Detection of Cu(II) Ions , 2012, Advanced materials.

[139]  A. Kruse,et al.  Hydrothermale Karbonisierung: 1. Einfluss des Lignins in Lignocellulosen , 2011 .

[140]  Jung-Ki Park,et al.  Fabrication of polyacrylonitrile/lignin-based carbon nanofibers for high-power lithium ion battery anodes , 2013, Journal of Solid State Electrochemistry.

[141]  P. Lotlikar Enzymatic N-O-methylation of hydroxamic acids. , 1968, Biochimica et biophysica acta.

[142]  T. Rials,et al.  Recent advances in low‐cost carbon fiber manufacture from lignin , 2013 .

[143]  D. Zhao,et al.  Comprehensive study of pore evolution, mesostructural stability, and simultaneous surface functionalization of ordered mesoporous carbon (FDU-15) by wet oxidation as a promising adsorbent. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[144]  J. Mao,et al.  Effects of biomass types and carbonization conditions on the chemical characteristics of hydrochars. , 2013, Journal of agricultural and food chemistry.

[145]  Kevin E. Shopsowitz,et al.  Mesoporous silica and organosilica films templated by nanocrystalline chitin. , 2013, Chemistry.

[146]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[147]  D. Su,et al.  Metal-free heterogeneous catalysis for sustainable chemistry. , 2010, ChemSusChem.

[148]  Robin J. White,et al.  Renewable nitrogen-doped hydrothermal carbons derived from microalgae. , 2012, ChemSusChem.

[149]  M. C. Kroon,et al.  Low-transition-temperature mixtures (LTTMs): a new generation of designer solvents. , 2013, Angewandte Chemie.

[150]  Paul S. Wheatley,et al.  Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues , 2004, Nature.

[151]  Sang Hoon Joo,et al.  Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation , 1999 .

[152]  F. Kurosaki,et al.  Preparation of nanofibrillar carbon from chitin nanofibers , 2010 .

[153]  E. Auer,et al.  Carbons as supports for industrial precious metal catalysts , 1998 .

[154]  James A. Ritter,et al.  Preparation and Properties of Resorcinol–Formaldehyde Organic and Carbon Gels , 2003 .

[155]  J. Clark,et al.  Starbon® acids in alkylation and acetylation reactions: Effect of the Brönsted-Lewis acidity , 2011 .

[156]  J. Vijaya,et al.  Equilibrium, kinetic and thermodynamic studies on the adsorption of m-cresol onto micro- and mesoporous carbon. , 2007, Journal of hazardous materials.

[157]  M. Gutiérrez,et al.  Deep-eutectic-solvent-assisted synthesis of hierarchical carbon electrodes exhibiting capacitance retention at high current densities. , 2011, Chemistry.

[158]  A. C. Eissens,et al.  A new generation of starch products as excipient in pharmaceutical tablets. I. Preparation and binding properties of high surface area potato starch products , 1996 .

[159]  Takashi Jimbo,et al.  Simplified synthesis of single-walled carbon nanotubes from a botanical hydrocarbon: Turpentine oil , 2008 .

[160]  P. Serp,et al.  Geomimetic catalysis: From volcanic stones to ultra-selective Fe–Mo/Al2O3–TiO2 catalysts for few-walled carbon nanotube production , 2013 .

[161]  Christopher W. Jones,et al.  Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. , 2009, ChemSusChem.

[162]  Toyoko Imae,et al.  One-Pot Synthesis of Fluorescent Carbon Dots from Orange Waste Peels , 2013 .

[163]  J. Clark,et al.  Biodiesel‐Like Biofuels from Simultaneous Transesterification/Esterification of Waste Oils with a Biomass‐Derived Solid Acid Catalyst , 2011 .

[164]  J. Clark,et al.  A seawater-based biorefining strategy for fermentative production and chemical transformations of succinic acid , 2011 .

[165]  B. König,et al.  Stille reactions with tetraalkylstannanes and phenyltrialkylstannanes in low melting sugar-urea-salt mixtures , 2006 .

[166]  Dang Sheng Su,et al.  20 years of carbon nanotubes. , 2011, ChemSusChem.

[167]  J. Clark,et al.  Molecular-level understanding of the carbonisation of polysaccharides. , 2013, Chemistry.

[168]  Markus Antonietti,et al.  From Starch to Metal/Carbon Hybrid Nanostructures: Hydrothermal Metal‐Catalyzed Carbonization , 2004 .

[169]  I. Phang,et al.  Growth of Carbon Nanotubes on Clay: Unique Nanostructured Filler for High‐Performance Polymer Nanocomposites , 2006 .

[170]  L. Pereira Porous Graphitic Carbon as a Stationary Phase in HPLC: Theory and Applications , 2008 .

[171]  Juan Carlos Colmenares,et al.  A novel biomass-based support (Starbon) for TiO2 hybrid photocatalysts: a versatile green tool for water purification , 2013 .

[172]  R. Marchessault,et al.  In vitro chiral nematic ordering of chitin crystallites. , 1993, International journal of biological macromolecules.

[173]  D. Su,et al.  Natural lavas as catalysts for efficient production of carbon nanotubes and nanofibers. , 2007, Angewandte Chemie.

[174]  Xuejie Huang,et al.  Research on Advanced Materials for Li‐ion Batteries , 2009 .

[175]  M. Antonietti,et al.  Aminated hydrophilic ordered mesoporous carbons , 2007 .

[176]  Kevin E. Shopsowitz,et al.  Free-standing mesoporous silica films with tunable chiral nematic structures , 2010, Nature.

[177]  Peter J. F. Harris,et al.  Carbon Nanotube Science: Synthesis, Properties and Applications , 2009 .

[178]  Xiaowei Lu,et al.  Thermal conversion of municipal solid waste via hydrothermal carbonization: comparison of carbonization products to products from current waste management techniques. , 2012, Waste management.

[179]  A. Abbott,et al.  Application of hole theory to define ionic liquids by their transport properties. , 2007, The journal of physical chemistry. B.

[180]  Rajendar R. Mallepally,et al.  Superabsorbent alginate aerogels , 2013 .

[181]  Dingcai Wu,et al.  The role of mass transport pathway in wormholelike mesoporous carbon for supercapacitors. , 2010, Physical chemistry chemical physics : PCCP.

[182]  Jin-Song Hu,et al.  Carbon Coated Fe3O4 Nanospindles as a Superior Anode Material for Lithium‐Ion Batteries , 2008 .

[183]  W. Marsden I and J , 2012 .

[184]  Robin J. White,et al.  Ordered Carbohydrate-Derived Porous Carbons , 2011 .

[185]  A. Szczurek,et al.  Mayonnaise, whipped cream and meringue, a new carbon cuisine , 2013 .

[186]  Z. Wen,et al.  Template Synthesis of Aligned Carbon Nanotube Arrays using Glucose as a Carbon Source: Pt Decoration of Inner and Outer Nanotube Surfaces for Fuel‐Cell Catalysts , 2008 .

[187]  Antonio B. Fuertes,et al.  Sustainable porous carbons with a superior performance for CO2 capture , 2011 .

[188]  M. Jaroniec,et al.  Ordered mesoporous carbons , 2001 .

[189]  M. Willinger,et al.  A one-pot hydrothermal synthesis of sulfur and nitrogen doped carbon aerogels with enhanced electrocatalytic activity in the oxygen reduction reaction , 2012 .

[190]  D. Cory Separation of non-protonated from protonated carbon NMR resonances in solids by inversion-recovery cross polarization , 1988 .

[191]  Hao Jin,et al.  Nanofibrillar cellulose aerogels , 2004 .

[192]  J. A. Menéndez,et al.  Continuous flow nanocatalysis: reaction pathways in the conversion of levulinic acid to valuable chemicals , 2013 .

[193]  M. Haenel Recent progress in coal structure research , 1992 .

[194]  M. Titirici,et al.  High-performance CO2 sorbents from algae , 2012 .

[195]  A. B. Fuertes,et al.  The production of carbon materials by hydrothermal carbonization of cellulose , 2009 .

[196]  Sergei O. Kucheyev,et al.  Stiff and electrically conductive composites of carbon nanotube aerogels and polymers , 2009 .

[197]  A. Funke,et al.  Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering , 2010 .

[198]  Shou‐Heng Liu,et al.  Nitrogen-doped ordered mesoporous carbons as electrocatalysts for methanol-tolerant oxygen reduction , 2011 .

[199]  D. Su,et al.  Nanocarbons: efficient synthesis using natural lava as supported catalyst , 2007 .

[200]  J. Eckert,et al.  Hydrothermal carbon-based nanostructured hollow spheres as electrode materials for high-power lithium-sulfur batteries. , 2013, Physical chemistry chemical physics : PCCP.

[201]  Robin J. White,et al.  Hollow carbon nanospheres with a high rate capability for lithium-based batteries. , 2012, ChemSusChem.

[202]  Xuejie Huang,et al.  Monodispersed hard carbon spherules as a catalyst support for the electrooxidation of methanol , 2005 .

[203]  Ferdi Schüth,et al.  Design of solid catalysts for the conversion of biomass , 2009 .

[204]  E. Morris,et al.  Biological interactions between polysaccharides and divalent cations: The egg‐box model , 1973 .

[205]  Yingshuai Liu,et al.  One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper(II) ion detection , 2014 .

[206]  L. Luo,et al.  Synthesis of uniform Te@ carbon-rich composite nanocables with photoluminescence properties and carbonaceous nanofibers by the hydrothermal carbonization of glucose , 2006 .

[207]  Markus Antonietti,et al.  Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass , 2010, Advances in Materials.

[208]  Michael J. Sadowsky,et al.  Hydrothermal carbonization of microalgae II. Fatty acid, char, and algal nutrient products , 2011 .

[209]  A. Ogale,et al.  Carbon fibers from dry-spinning of acetylated softwood kraft lignin , 2014 .

[210]  J. Thomas-Oates,et al.  Quantification of sugars and sugar phosphates in Arabidopsis thaliana tissues using porous graphitic carbon liquid chromatography-electrospray ionization mass spectrometry. , 2007, Journal of chromatography. A.

[211]  E. Morallón,et al.  Electrochemical performance of hierarchical porous carbon materials obtained from the infiltration of lignin into zeolite templates. , 2014, ChemSusChem.

[212]  David L Davies,et al.  Novel solvent properties of choline chloride/urea mixtures. , 2003, Chemical communications.

[213]  M. Titirici,et al.  Structural Insights on Nitrogen-Containing Hydrothermal Carbon Using Solid-State Magic Angle Spinning13C and 15N Nuclear Magnetic Resonance , 2011 .

[214]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[215]  Antonio B. Fuertes,et al.  Hydrothermal Carbonization of Abundant Renewable Natural Organic Chemicals for High‐Performance Supercapacitor Electrodes , 2011 .

[216]  L. Nazar,et al.  Advances in Li–S batteries , 2010 .

[217]  Robin J. White,et al.  Functional hollow carbon nanospheres by latex templating. , 2010, Journal of the American Chemical Society.

[218]  A. J. Hunt,et al.  Use of Starbon for the Adsorption and Desorption of Phenols , 2013 .

[219]  M. Antonietti,et al.  Nitrogen‐Containing Hydrothermal Carbons with Superior Performance in Supercapacitors , 2010, Advanced materials.

[220]  Qiang Zhang,et al.  Energy‐Absorbing Hybrid Composites Based on Alternate Carbon‐Nanotube and Inorganic Layers , 2009 .

[221]  Bruce Dunn,et al.  Carbon aerogels for electrochemical applications , 1998 .

[222]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[223]  Robin J. White,et al.  Nitrogen-doped Hydrothermal Carbons , 2012 .

[224]  V. Rajinikanth,et al.  Preparation and characterization of graphene and Ni-decorated graphene using flower petals as the precursor material , 2012 .

[225]  Hideki Tanaka,et al.  Conductive and mesoporous single-wall carbon nanohorn/organic aerogel composites. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[226]  Arne Thomas,et al.  Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications , 2013 .

[227]  Rafael Luque,et al.  Towards a bio-based industry: benign catalytic esterifications of succinic acid in the presence of water. , 2007, Chemistry.

[228]  Anastasia Zabaniotou,et al.  Agricultural residues as precursors for activated carbon production—A review , 2007 .

[229]  Li Zhao,et al.  Sustainable nitrogen-doped carbonaceous materials from biomass derivatives , 2010 .

[230]  Huixin Shi,et al.  Highly wrinkled cross-linked graphene oxide membranes for biological and charge-storage applications. , 2012, Small.

[231]  D. F. Pindar,et al.  The biosynthesis of alginic acid by Azotobacter vinelandii. , 1975, The Biochemical journal.

[232]  A. Hollenkamp,et al.  Carbon properties and their role in supercapacitors , 2006 .

[233]  Jie Chang,et al.  Hydrothermal conversion of lignin: A review , 2013 .

[234]  Tasneem Abbasi,et al.  Decarbonization of fossil fuels as a strategy to control global warming , 2011 .

[235]  Robin J. White,et al.  Flexible Coral-like Carbon Nanoarchitectures via a Dual Block Copolymer–Latex Templating Approach , 2013 .

[236]  M. Gutiérrez,et al.  Deep eutectic solvents as both precursors and structure directing agents in the synthesis of nitrogen doped hierarchical carbons highly suitable for CO2 capture , 2011 .

[237]  M. Antonietti,et al.  Hydrothermal synthesis of imidazole functionalized carbon spheres and their application in catalysis , 2010 .

[238]  Maria-Magdalena Titirici,et al.  Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons , 2011 .

[239]  M. Antonietti,et al.  Replication and Coating of Silica Templates by Hydrothermal Carbonization , 2007 .

[240]  M. Antonietti,et al.  A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach , 2006 .

[241]  D. Mohan,et al.  Arsenic removal from water/wastewater using adsorbents--A critical review. , 2007, Journal of hazardous materials.

[242]  D. Gournis,et al.  Catalytic synthesis of carbon nanotubes on clay minerals , 2002 .

[243]  J. Eckert,et al.  Hydrothermal nanocasting: Synthesis of hierarchically porous carbon monoliths and their application in lithium-sulfur batteries , 2013 .

[244]  I. Smirnova,et al.  Preparation of tailor-made starch-based aerogel microspheres by the emulsion-gelation method , 2012 .

[245]  B. König,et al.  Low-melting sugar-urea-salt mixtures as solvents for Diels-Alder reactions. , 2005, Chemical communications.

[246]  M. M. Chaves,et al.  Analysis of carbohydrates in Lupinus albus stems on imposition of water deficit, using porous graphitic carbon liquid chromatography-electrospray ionization mass spectrometry. , 2008, Journal of chromatography. A.

[247]  Mingtao Zheng,et al.  One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. , 2012, Chemical communications.

[248]  C. Noubactep,et al.  Adsorption of methylene blue from an aqueous solution on to activated carbons from palm-tree cobs , 1997 .

[249]  J. F. Porter,et al.  Sorption of acid dyes from effluents using activated carbon , 1999 .

[250]  A. Suriani,et al.  The Effect of Precursor Vaporization Temperature on the Growth of Vertically Aligned Carbon Nanotubes Using Palm Oil , 2011 .

[251]  A. Abbott,et al.  Design of improved deep eutectic solvents using hole theory. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[252]  A. J. Hunt,et al.  Shaped mesoporous materials from fresh macroalgae , 2013 .

[253]  J. Smått,et al.  Carbon Monoliths Possessing a Hierarchical, Fully Interconnected Porosity , 2003 .

[254]  J. Madejová,et al.  Infrared spectroscopy of NH4+-bearing and saturated clay minerals: A review of the study of layer charge , 2006 .

[255]  A. J. Hunt,et al.  The importance of being porous: polysaccharide-derived mesoporous materials for use in dye adsorption , 2012 .

[256]  Characterization of biomass and its derived char using 13C-solid state nuclear magnetic resonance , 2014 .

[257]  D. Lenoir,et al.  Low melting sugar–urea–salt mixtures as solvents for organic reactions—estimation of polarity and use in catalysis , 2006 .

[258]  Q. Guo,et al.  Growth of carbon nanotubes on natural organic precursors by chemical vapor deposition , 2011 .

[259]  Robin J. White,et al.  Template Synthesis of Carbonaceous Tubular Nanostructures with Tunable Surface Properties , 2010 .

[260]  M. H. Mamat,et al.  Vertically aligned carbon nanotubes synthesized from waste chicken fat , 2013 .

[261]  J. Clark,et al.  Polysaccharide‐Derived Carbons for Polar Analyte Separations , 2010 .

[262]  D. Zhao,et al.  Highly Efficient Adsorption of Bulky Dye Molecules in Wastewater on Ordered Mesoporous Carbons , 2009 .

[263]  A. J. Hunt,et al.  Green chemistry and the biorefinery: a partnership for a sustainable future , 2006 .

[264]  Joaquín Silvestre-Albero,et al.  High-surface-area carbon molecular sieves for selective CO(2) adsorption. , 2010, ChemSusChem.

[265]  S. Gurunathan,et al.  Green chemistry approach for the synthesis of biocompatible graphene , 2013, International journal of nanomedicine.

[266]  M. Pumera,et al.  Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. , 2014, Chemical Society reviews.

[267]  N. Mano,et al.  Emulsion-templated macroporous carbons synthesized by hydrothermal carbonization and their application for the enzymatic oxidation of glucose. , 2013, ChemSusChem.

[268]  Hua Zhang,et al.  Graphene-based composites. , 2012, Chemical Society reviews.

[269]  A. Szczurek,et al.  New tannin–lignin aerogels , 2013 .

[270]  Markus Antonietti,et al.  Carboxylate-Rich Carbonaceous Materials via One-Step Hydrothermal Carbonization of Glucose in the Presence of Acrylic Acid , 2009 .

[271]  Liming Xie,et al.  Chiral structure determination of aligned single-walled carbon nanotubes on graphite surface. , 2013, Nano letters.

[272]  F. S. Baker,et al.  On the characterization and spinning of an organic‐purified lignin toward the manufacture of low‐cost carbon fiber , 2012 .

[273]  Timothy Christopher Golden,et al.  ACTIVATED CARBON FOR GAS SEPARATION AND STORAGE , 1996 .

[274]  F. Diederich,et al.  Preparation of Enantiomerically Pure C76 with a General Electrochemical Method for the Removal of Di(alkoxycarbonyl)methano Bridges from Methanofullerenes: The Retro-Bingel Reaction , 1998 .

[275]  Robin J. White,et al.  A sustainable synthesis of nitrogen-doped carbon aerogels , 2011 .

[276]  D. Zhao,et al.  One-step hydrothermal synthesis of ordered mesostructured carbonaceous monoliths with hierarchical porosities. , 2008, Chemical communications.

[277]  S. Rondeau‐Gagné,et al.  Preparation of carbon nanomaterials from molecular precursors. , 2014, Chemical Society reviews.

[278]  M. Gutiérrez,et al.  Deep eutectic assisted synthesis of carbon adsorbents highly suitable for low-pressure separation of CO2–CH4 gas mixtures , 2012 .

[279]  K. Sudo,et al.  A new carbon fiber from lignin , 1992 .

[280]  Kunlun Hong,et al.  Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers. , 2004, Angewandte Chemie.

[281]  D. Zhao,et al.  A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia3d bicontinuous cubic structure. , 2005, Journal of the American Chemical Society.

[282]  A. Lesage,et al.  Proton to carbon-13 INEPT in solid-state NMR spectroscopy. , 2005, Journal of the American Chemical Society.

[283]  D. Su,et al.  Recent progress on the growth mechanism of carbon nanotubes: a review. , 2011, ChemSusChem.

[284]  Bin Wang,et al.  Recent development of non-platinum catalysts for oxygen reduction reaction , 2005 .

[285]  A. Roig,et al.  Design of biocompatible magnetic pectin aerogel monoliths and microspheres , 2012 .

[286]  Takashi Jimbo,et al.  A simple method of producing single-walled carbon nanotubes from a natural precursor: Eucalyptus oil , 2007 .

[287]  Robert A. Huggins,et al.  Lithium alloy negative electrodes , 1999 .

[288]  Kevin E. Shopsowitz,et al.  Chiral nematic mesoporous carbon derived from nanocrystalline cellulose. , 2011, Angewandte Chemie.

[289]  C. Liew,et al.  Modifying matrix micro-environmental pH to achieve sustained drug release from highly laminating alginate matrices. , 2008, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[290]  Markus Antonietti,et al.  Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. , 2010, Chemical Society reviews.

[291]  Joseph R. V. Flora,et al.  Influence of reaction time and temperature on product formation and characteristics associated with the hydrothermal carbonization of cellulose. , 2013, Bioresource technology.

[292]  K. M. Abraham,et al.  A Lithium/Dissolved Sulfur Battery with an Organic Electrolyte , 1979 .

[293]  N. Brun,et al.  Original design of nitrogen-doped carbon aerogels from sustainable precursors: application as metal-free oxygen reduction catalysts , 2013 .

[294]  Qiang Zhang,et al.  Carbon nanotube mass production: principles and processes. , 2011, ChemSusChem.

[295]  A. B. Fuertes,et al.  Graphitic carbon nanostructures from cellulose , 2010 .

[296]  Jeremy J. Baumberg,et al.  Pointillist structural color in Pollia fruit , 2012, Proceedings of the National Academy of Sciences.

[297]  Suhas,et al.  Lignin--from natural adsorbent to activated carbon: a review. , 2007, Bioresource technology.

[298]  P Colonna,et al.  Starch granules: structure and biosynthesis. , 1998, International journal of biological macromolecules.

[299]  Fan Yang,et al.  Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. , 2009, Chemical communications.

[300]  Robin J. White,et al.  Direct methane oxidation over Pt-modified nitrogen-doped carbons. , 2013, Chemical communications.

[301]  Tao Wen,et al.  Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. , 2013, ACS nano.

[302]  F. S. Baker,et al.  NMR a critical tool to study the production of carbon fiber from lignin , 2013 .

[303]  Yoshinori Ando,et al.  Camphor–a botanical precursor producing garden of carbon nanotubes , 2003 .

[304]  M. Gutiérrez,et al.  Deep-eutectic solvents playing multiple roles in the synthesis of polymers and related materials. , 2012, Chemical Society reviews.

[305]  J. Clark,et al.  Versatile mesoporous carbonaceous materials for acid catalysis. , 2007, Chemical communications.

[306]  S. Gurunathan,et al.  Ginkgo biloba: a natural reducing agent for the synthesis of cytocompatible graphene , 2014, International journal of nanomedicine.