Minimum-Dilation Tour ( and Path ) is NP-hard

We prove that computing a minimum-dilation (Euclidean) Hamilton circuit or path on a given set of points in the plane is NP-hard.

[1]  Jayme Luiz Szwarcfiter,et al.  Hamilton Paths in Grid Graphs , 1982, SIAM J. Comput..

[2]  David Eppstein,et al.  Spanning Trees and Spanners , 2000, Handbook of Computational Geometry.

[3]  Rolf Klein,et al.  Computing Geometric Minimum-Dilation Graphs Is NP-Hard , 2006, Graph Drawing.

[4]  Leizhen Cai,et al.  NP-Completeness of Minimum Spanner Problems , 1994, Discret. Appl. Math..

[5]  Leizhen Cai,et al.  Tree Spanners , 1995, SIAM J. Discret. Math..

[6]  Michiel Smid,et al.  Closest-Point Problems in Computational Geometry , 2000, Handbook of Computational Geometry.

[7]  Dagmar Handke,et al.  NP-Completeness Results for Minimum Planar Spanners , 1998, Discret. Math. Theor. Comput. Sci..

[8]  Otfried Cheong,et al.  Computing a minimum-dilation spanning tree is NP-hard , 2008, Comput. Geom..

[9]  S. Rao Kosaraju,et al.  A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields , 1995, JACM.