One-way communication complexity and the Neciporuk lower bound on formula size

In this paper the Neciporuk method for proving lower bounds on the size of Boolean formulas is reformulated in terms of one-way communication complexity. We investigate the settings of probabilistic formulas, nondeterministic formulas, and quantum formulas. In all cases we can use results about one-way communication complexity to prove lower bounds on formula size. The main results regarding formula size are as follows: We show a polynomial size gap between probabilistic/quantum and deterministic formulas, a near-quadratic gap between the sizes of nondeterministic formulas with limited access to nondeterministic bits and nondeterministic formulas with access to slightly more such bits, and a near-quadratic lower bound on quantum formula size. Furthermore we give a polynomial separation between the sizes of quantum formulas with and without multiple read random inputs. The lower bound methods for quantum and probabilistic formulas employ a variant of the Neciporuk bound in terms of the Vapnik-Chervonenkis dimension. To establish our lower bounds we show optimal separations between one-way and two-way protocols for limited nondeterministic and quantum communication complexity, and we show that zero-error quantum one-way communication complexity asymptotically equals deterministic one-way communication complexity for total functions.

[1]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[2]  R. Cleve,et al.  SUBSTITUTING QUANTUM ENTANGLEMENT FOR COMMUNICATION , 1997, quant-ph/9704026.

[3]  Juraj Hromkovic,et al.  On the Power of Las Vegas for One-Way Communication Complexity, OBDDs, and Finite Automata , 2001, Inf. Comput..

[4]  Johan Hå stad The Shrinkage Exponent of de Morgan Formulas is 2 , 1998 .

[5]  Mike Paterson Boolean Circuit Complexity , 1992, ISAAC.

[6]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[7]  José D. P. Rolim,et al.  On the Power of Las Vegas for One-way Communication Complexity, Finite Automata, and Polynomial-time Computations , 1997, Electron. Colloquium Comput. Complex..

[8]  Noam Nisan,et al.  On Randomized One-round Communication Complexity , 1995, STOC '95.

[9]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[10]  Uri Zwick,et al.  Ampliication by Read-once Formulae , 1995 .

[11]  Noam Nisan,et al.  Quantum circuits with mixed states , 1998, STOC '98.

[12]  Hartmut Klauck,et al.  On quantum and probabilistic communication: Las Vegas and one-way protocols , 2000, STOC '00.

[13]  Mário Ziman,et al.  Programmable Quantum Gate Arrays , 2001 .

[14]  Dominic Mayers Unconditionally secure quantum bit commitment is impossible , 1997 .

[15]  Hartmut Klauck,et al.  Lower bounds for computation with limited nondeterminism , 1998, Proceedings. Thirteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat. No.98CB36247).

[16]  Judy Goldsmith,et al.  Limited nondeterminism , 1996, SIGA.

[17]  Juraj Hromkovic,et al.  Tradeoffs between Nondeterminism and Complexity for Communication Protocols and Branching Programs , 2000, STACS.

[18]  Ronald de Wolf,et al.  Communication complexity lower bounds by polynomials , 1999, Proceedings 16th Annual IEEE Conference on Computational Complexity.

[19]  Ravi B. Boppana,et al.  Amplification of probabilistic boolean formulas , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[20]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[21]  Farrokh Vatan,et al.  An Almost-Quadratic Lower Bound for Quantum Formula Size , 1999, ArXiv.

[22]  Johan Håstad The Shrinkage Exponent of de Morgan Formulas is 2 , 1998, SIAM J. Comput..

[23]  Leslie G. Valiant,et al.  Short Monotone Formulae for the Majority Function , 1984, J. Algorithms.

[24]  Ashwin Nayak,et al.  Optimal lower bounds for quantum automata and random access codes , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[25]  Juraj Hromkovic,et al.  Nondeterministic communication with a limited number of advice bits , 1996, STOC '96.

[26]  Farrokh Vatan,et al.  Quantum Formulas: A Lower Bound and Simulation , 2001, SIAM J. Comput..

[27]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[28]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[29]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[30]  Noam Nisan,et al.  Multiparty Protocols, Pseudorandom Generators for Logspace, and Time-Space Trade-Offs , 1992, J. Comput. Syst. Sci..

[31]  Hartmut Klauck,et al.  Interaction in quantum communication and the complexity of set disjointness , 2001, STOC '01.

[32]  G. Brassard,et al.  Quantum Communication Complexity , 2003 .

[33]  Bala Kalyanasundaram,et al.  The Probabilistic Communication Complexity of Set Intersection , 1992, SIAM J. Discret. Math..

[34]  Avi Wigderson,et al.  Quantum vs. classical communication and computation , 1998, STOC '98.

[35]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[36]  Jonathan Katz,et al.  On the efficiency of local decoding procedures for error-correcting codes , 2000, STOC '00.

[37]  Ravi B. Boppana,et al.  The Complexity of Finite Functions , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[38]  H. F. Chau,et al.  Why quantum bit commitment and ideal quantum coin tossing are impossible , 1997 .

[39]  Hartmut Klauck Lower Bounds for Quantum Communication Complexity , 2007, SIAM J. Comput..

[40]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[41]  Hartmut Klauck,et al.  On the Size of Probabilistic Formulae , 1997, ISAAC.

[42]  Umesh Vazirani,et al.  Lower bounds for quantum computation and communication , 1999 .

[43]  Ilan Newman,et al.  Private vs. Common Random Bits in Communication Complexity , 1991, Inf. Process. Lett..