Visual clustering and classification: The Oronsay particle size data set revisited

SummaryInteractive statistical graphics can be effectively used to find natural groupings in observations. In this paper we want to demonstrate how clustering and classification can be done with three approaches based on highly interactive graphical environments: high-dimensional scatterplots as available in XGobi, parallel coordinate plots as available in EXPLORN, and linked low-dimensional views as available in MANET. We will point out the strenghts and the weaknesses of these techniques by comparing their behaviour when applied to the Oronsay particle size data set.

[1]  Andreas Buja,et al.  XGobi: Interactive Dynamic Data Visualization in the X Window System , 1998 .

[2]  Daniel B. Carr,et al.  26 Statistical graphics and visualization , 1993, Computational Statistics.

[3]  Heike Hofmann,et al.  Interactive Graphics for Data Sets with Missing Values—MANET , 1996 .

[4]  M. E. McGill,et al.  Dynamic Graphics for Statistics , 1988 .

[5]  N. Fieller,et al.  Statistics of Particle Size Data , 1992 .

[6]  Andreas Buja,et al.  Grand tour methods: an outline , 1986 .

[7]  D. D. Gilbertson,et al.  A new method for environmental analysis of particle size distribution data from shoreline sediments , 1984, Nature.

[8]  Sigbert Klinke,et al.  Binning of kernel-based projection pursuit indices in XGobi , 1997 .

[9]  David W. Scott The New S Language , 1990 .

[10]  Edward J. Wegman,et al.  The Grand Tour in k-Dimensions , 1992 .

[11]  E. Wegman Hyperdimensional Data Analysis Using Parallel Coordinates , 1990 .

[12]  W. Olbricht,et al.  Classification of Archæological Sands by Particle Size Analysis , 1993 .

[13]  Dianne Cook,et al.  Dynamic Graphics in a GIS: A Bidirectional Link between ArcView 2.0 and XGobi , 1998 .

[14]  Daniel Asimov,et al.  The grand tour: a tool for viewing multidimensional data , 1985 .

[15]  Noel A Cressie,et al.  Dynamic graphics in a GIS: exploring and analyzing multivariate spatial data using linked software , 1996 .

[16]  Paul Mellars,et al.  Excavations on Oronsay: Prehistoric Human Ecology on a Small Island , 1987 .

[17]  Deborah F. Swayne,et al.  Interactive Graphical Methods in the Analysis of Customer Panel Data , 1996 .

[18]  Edward J. Wegman,et al.  Huge Data Sets and the Frontiers of Computational Feasibility , 1995 .

[19]  John W. Tukey,et al.  A Projection Pursuit Algorithm for Exploratory Data Analysis , 1974, IEEE Transactions on Computers.

[20]  Allan R. Wilks,et al.  The new S language: a programming environment for data analysis and graphics , 1988 .

[21]  Andreas Buja,et al.  Xgobi: Interactive Dynamic Graphics In The X Window System With A Link To S , 1991 .

[22]  Noel A Cressie,et al.  Dynamic graphics in a GIS: more examples using linked software , 1997 .

[23]  Andreas Buja,et al.  Interactive High-Dimensional Data Visualization , 1996 .

[24]  Edward J. Wegman,et al.  High Dimensional Clustering Using Parallel Coordinates and the Grand Tour , 1997 .

[25]  E. Wegman Hyperdimensional Data Analysis Using Parallel Coordinates1 , 1990 .

[26]  A. Buja,et al.  Projection Pursuit Indexes Based on Orthonormal Function Expansions , 1993 .

[27]  Andreas Buja,et al.  Grand tour and projection pursuit , 1995 .

[28]  J. Kruskal TOWARD A PRACTICAL METHOD WHICH HELPS UNCOVER THE STRUCTURE OF A SET OF MULTIVARIATE OBSERVATIONS BY FINDING THE LINEAR TRANSFORMATION WHICH OPTIMIZES A NEW “INDEX OF CONDENSATION” , 1969 .

[29]  Graham J. Wills,et al.  High interaction graphics , 1995 .