Routing Physarum with repellents

Plasmodium of Physarum polycephalum is a single cell with many nuclei. Plasmodium is an easy-to-experiment-with biological substrate, a multi-functional bio-material used to implement novel and future computing architectures. The plasmodium exhibits typical features of excitable chemical systems and capable for distributed sensing, parallel information processing and decentralized actuation. Plasmodium of P. polycephalum is proved to be a universal storage modification machine. Actively growing zones of the plasmodium are considered to be elementary processors of the growing computing machine, as well as messages traveling in the spatially extended non-linear medium. Controlling propagation of the messages and computing processes is a prerequisite for a successful implementation of working prototypes of plasmodium machines. In laboratory experiments and computer simulation we show that active growing zones of plasmodium can be precisely routed using repelling diffusion gradients generated by crystals of sodium chloride. We demonstrate how to achieve controllable reflection, splitting/multiplication and merging of plasmodium’s active zones.

[1]  T. Ueda,et al.  Interaction between cell shape and contraction pattern in the Physarum plasmodium. , 2000, Biophysical chemistry.

[2]  I Block,et al.  Blue light as a medium to influence oscillatory contraction frequency in Physarum. , 1981, Cell biology international reports.

[3]  Tomohiro Shirakawa,et al.  On Simultaneous Construction of Voronoi Diagram and Delaunay Triangulation by Physarum polycephalum , 2009, Int. J. Bifurc. Chaos.

[4]  Jeff Jones,et al.  Programmable reconfiguration of Physarum machines , 2009, Natural Computing.

[5]  Arnold Schönhage Storage Modification Machines , 1980, SIAM J. Comput..

[6]  L. Tarassenko,et al.  Analogue computation of collision-free paths , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[7]  Andrew Adamatzky,et al.  Physarum Machine: Implementation of a Kolmogorov-Uspensky Machine on a Biological substrate , 2007, Parallel Process. Lett..

[8]  Vladimir A. Uspensky,et al.  Kolmogorov and mathematical logic , 1992, Journal of Symbolic Logic.

[9]  T. Ueda,et al.  Modulation of cellular rhythm and photoavoidance by oscillatory irradiation in the Physarum plasmodium. , 1999, Biophysical chemistry.

[10]  R. M. Noyes,et al.  Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction , 1974 .

[11]  M H Weisenseel,et al.  Ionic currents traverse the slime mould physarum. , 1981, Cell biology international reports.

[12]  Andrew Adamatzky,et al.  Physarum machines: encapsulating reaction–diffusion to compute spanning tree , 2007, Naturwissenschaften.

[13]  Stefan J. Johansson,et al.  A Multiagent Potential Field-Based Bot for Real-Time Strategy Games , 2009, Int. J. Comput. Games Technol..

[14]  Andrew Adamatzky,et al.  Developing Proximity Graphs by Physarum polycephalum: Does the Plasmodium Follow the Toussaint Hierarchy? , 2009, Parallel Process. Lett..

[15]  Tetsuya Asai,et al.  Reaction-diffusion computers , 2005 .

[16]  T. Nakagaki,et al.  Smart behavior of true slime mold in a labyrinth. , 2001, Research in microbiology.

[17]  J. Tyson,et al.  Target patterns in a realistic model of the Belousov–Zhabotinskii reaction , 1980 .

[18]  I Block,et al.  The pathway of photosensory transduction in Physarum polycephalum. , 1981, Cell biology international reports.

[19]  A. Tero,et al.  Minimum-risk path finding by an adaptive amoebal network. , 2007, Physical review letters.

[20]  Klaus-Peter Zauner,et al.  Robot control with biological cells , 2007, Biosyst..

[21]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[22]  L. Kuhnert,et al.  Analysis of the modified complete Oregonator accounting for oxygen sensitivity and photosensitivity of Belousov-Zhabotinskii systems , 1990 .

[23]  Toshiyuki Nakagaki,et al.  Amoebae anticipate periodic events. , 2008, Physical review letters.

[24]  Jacob Beal Programming an Amorphous Computational Medium , 2004, UPP.

[25]  Tomohiro Shirakawa,et al.  Universal Computation with Limited Resources: Belousov-zhabotinsky and Physarum Computers , 2007, Int. J. Bifurc. Chaos.

[26]  Masashi Aono,et al.  Robust and emergent Physarum logical-computing. , 2004, Bio Systems.

[27]  Robert E. Tarjan,et al.  Reference machines require non-linear time to maintain disjoint sets , 1977, STOC '77.

[28]  Derek Abbott,et al.  Noise in Complex Systems and Stochastic Dynamics , 2003 .

[29]  A. Adamatzky If BZ medium did spanning trees these would be the same trees as Physarum built , 2009 .

[30]  T. Nakagaki,et al.  Path finding by tube morphogenesis in an amoeboid organism. , 2001, Biophysical chemistry.

[31]  Kenneth Showalter,et al.  Chemical Wave Logic Gates , 1996 .