Rapid evolution, rearrangements and whole mitogenome duplication in the Australian stingless bees Tetragonula (Hymenoptera: Apidae): A steppingstone towards understanding mitochondrial function and evolution.

[1]  R. Shao,et al.  Fragmentation in mitochondrial genomes in relation to elevated sequence divergence and extreme rearrangements , 2022, BMC biology.

[2]  Ying Feng,et al.  The Complete Mitochondrial Genome of Lepidotrigona flavibasis (Hymenoptera: Meliponini) and High Gene Rearrangement in Lepidotrigona Mitogenomes , 2021, Journal of insect science.

[3]  Carolina G. Santos,et al.  The nuclear and mitochondrial genomes of Frieseomelitta varia – a highly eusocial stingless bee (Meliponini) with a permanently sterile worker caste , 2020, BMC Genomics.

[4]  R. Zardoya Recent advances in understanding mitochondrial genome diversity , 2020, F1000Research.

[5]  J. Romiguier,et al.  Relaxation of purifying selection suggests low effective population size in eusocial Hymenoptera and solitary pollinating bees , 2020, bioRxiv.

[6]  P. Santos,et al.  Evolutionary perspectives on bee mtDNA from mito-OMICS analyses of a solitary species , 2020, Apidologie.

[7]  T. Smith Evidence for male genitalia detachment and female mate choice in the Australian stingless bee Tetragonula carbonaria , 2019, Insectes Sociaux.

[8]  B. Oldroyd,et al.  Conserved numts mask a highly divergent mitochondrial-COI gene in a species complex of Australian stingless bees Tetragonula (Hymenoptera: Apidae) , 2019, Mitochondrial DNA. Part A, DNA mapping, sequencing, and analysis.

[9]  S. Nadler,et al.  The bipartite mitochondrial genome of Ruizia karukerae (Rhigonematomorpha, Nematoda) , 2018, Scientific Reports.

[10]  N. Galtier,et al.  Large Variation in the Ratio of Mitochondrial to Nuclear Mutation Rate across Animals: Implications for Genetic Diversity and the Use of Mitochondrial DNA as a Molecular Marker , 2017, Molecular biology and evolution.

[11]  M. F. Camus,et al.  Experimental Support That Natural Selection Has Shaped the Latitudinal Distribution of Mitochondrial Haplotypes in Australian Drosophila melanogaster , 2017, Molecular biology and evolution.

[12]  C. Tellgren-Roth,et al.  The Evolution of Dark Matter in the Mitogenome of Seed Beetles , 2017, Genome biology and evolution.

[13]  B. Moumen,et al.  Untangling Heteroplasmy, Structure, and Evolution of an Atypical Mitochondrial Genome by PacBio Sequencing , 2017, Genetics.

[14]  M. C. Arias,et al.  A protocol for isolating insect mitochondrial genomes: a case study of NUMT in Melipona flavolineata (Hymenoptera: Apidae) , 2016, Mitochondrial DNA. Part A, DNA mapping, sequencing, and analysis.

[15]  Jeffrey P. Mower,et al.  Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates. , 2016, The New phytologist.

[16]  R. Dobler,et al.  A meta‐analysis of the strength and nature of cytoplasmic genetic effects , 2014, Journal of evolutionary biology.

[17]  J. Enríquez,et al.  Mitonuclear interactions: evolutionary consequences over multiple biological scales , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[18]  D. K. Dowling,et al.  Evolutionary perspectives on the links between mitochondrial genotype and disease phenotype. , 2014, Biochimica et biophysica acta.

[19]  L. Keller,et al.  Population genomics of eusocial insects: the costs of a vertebrate‐like effective population size , 2014, Journal of evolutionary biology.

[20]  R. Burton,et al.  Cytonuclear Genomic Interactions and Hybrid Breakdown , 2013 .

[21]  P. Stadler,et al.  MITOS: improved de novo metazoan mitochondrial genome annotation. , 2013, Molecular phylogenetics and evolution.

[22]  M. C. Arias,et al.  Cytochrome c oxidase I primers for corbiculate bees: DNA barcode and mini‐barcode , 2013, Molecular ecology resources.

[23]  Kazuhito Watanabe,et al.  Complete mitochondrial DNA sequence of the ark shell Scapharca broughtonii: an ultra-large metazoan mitochondrial genome. , 2013, Comparative biochemistry and physiology. Part D, Genomics & proteomics.

[24]  Shane S. Sturrock,et al.  Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data , 2012, Bioinform..

[25]  T. Schaerf,et al.  Brood comb construction by the stingless bees Tetragonula hockingsi and Tetragonula carbonaria , 2012, Swarm Intelligence.

[26]  K. Zamudio,et al.  Genetic drift and rapid evolution of viviparity in insular fire salamanders (Salamandra salamandra) , 2011, Heredity.

[27]  Graziano Pesole,et al.  Hypervariability of ascidian mitochondrial gene order: exposing the myth of deuterostome organelle genome stability. , 2010, Molecular biology and evolution.

[28]  S. Cameron,et al.  Global stingless bee phylogeny supports ancient divergence, vicariance, and long distance dispersal , 2009 .

[29]  Frédéric Delsuc,et al.  Tunicate mitogenomics and phylogenetics: peculiarities of the Herdmania momus mitochondrial genome and support for the new chordate phylogeny , 2009, BMC Genomics.

[30]  N. Galtier,et al.  Mitochondrial DNA as a marker of molecular diversity: a reappraisal , 2009, Molecular ecology.

[31]  A. Braband,et al.  Phylogeny and mitochondrial gene order variation in Lophotrochozoa in the light of new mitogenomic data from Nemertea , 2009, BMC Genomics.

[32]  B. Liu,et al.  "Tandem duplication-random loss" is not a real feature of oyster mitochondrial genomes , 2009, BMC Genomics.

[33]  C. Bleidorn,et al.  Mitochondrial genome sequence and gene order of Sipunculus nudus give additional support for an inclusion of Sipuncula into Annelida , 2009, BMC Genomics.

[34]  Ziniu Yu,et al.  Complete mitochondrial DNA sequence of oyster Crassostrea hongkongensis-a case of "Tandem duplication-random loss" for genome rearrangement in Crassostrea? , 2008, BMC Genomics.

[35]  J. Werren,et al.  Rapidly evolving mitochondrial genome and directional selection in mitochondrial genes in the parasitic wasp nasonia (hymenoptera: pteromalidae). , 2008, Molecular biology and evolution.

[36]  U. Friberg,et al.  Evolutionary implications of non-neutral mitochondrial genetic variation. , 2008, Trends in ecology & evolution.

[37]  R. Cordaux,et al.  A Thirty Million Year-Old Inherited Heteroplasmy , 2008, PloS one.

[38]  J. Boore,et al.  Multiple origins and rapid evolution of duplicated mitochondrial genes in parthenogenetic geckos (Heteronotia binoei; Squamata, Gekkonidae). , 2007, Molecular biology and evolution.

[39]  R. Cordaux,et al.  Structure and Evolution of the Atypical Mitochondrial Genome of Armadillidium vulgare (Isopoda, Crustacea) , 2007, Journal of Molecular Evolution.

[40]  M. Lynch The origins of eukaryotic gene structure. , 2006, Molecular biology and evolution.

[41]  R. Zardoya,et al.  A hotspot of gene order rearrangement by tandem duplication and random loss in the vertebrate mitochondrial genome. , 2005, Molecular biology and evolution.

[42]  Michael Akam,et al.  Mitochondrial genomes suggest that hexapods and crustaceans are mutually paraphyletic , 2005, Proceedings of the Royal Society B: Biological Sciences.

[43]  J. Boore,et al.  Molecular mechanisms of extensive mitochondrial gene rearrangement in plethodontid salamanders. , 2005, Molecular biology and evolution.

[44]  Y. Kumazawa,et al.  Mitochondrial DNA sequences of the Afro-Arabian spiny-tailed lizards (genus Uromastyx; family Agamidae) : phylogenetic analyses and evolution of gene arrangements , 2005 .

[45]  B. Su,et al.  The mitochondrial genome organization of the rice frog, Fejervarya limnocharis (Amphibia: Anura): a new gene order in the vertebrate mtDNA. , 2005, Gene.

[46]  B. Oldroyd,et al.  Nest architecture and genetic differentiation in a species complex of Australian stingless bees , 2004, Molecular ecology.

[47]  Michael C Whitlock,et al.  The incomplete natural history of mitochondria , 2004, Molecular ecology.

[48]  E. Tibbetts,et al.  Molecular systematics of primary reptilian lineages and the tuatara mitochondrial genome. , 2003, Molecular phylogenetics and evolution.

[49]  Marty C. Brandon,et al.  Natural selection shaped regional mtDNA variation in humans , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[50]  K. H. Wolfe,et al.  Nucleotide substitution rates in legume chloroplast DNA depend on the presence of the inverted repeat. , 2002 .

[51]  B. Oldroyd,et al.  Paternity frequency and maternity of males in some stingless bee species , 2002, Molecular ecology.

[52]  D. Rand THE UNITS OF SELECTION ON MITOCHONDRIAL DNA , 2001 .

[53]  E. Bermingham,et al.  Duplication and concerted evolution of the mitochondrial control region in the parrot genus Amazona. , 2001, Molecular biology and evolution.

[54]  R. Burton,et al.  Natural selection and the evolution of mtDNA-encoded peptides: evidence for intergenomic co-adaptation. , 2001, Trends in genetics : TIG.

[55]  J. Boore,et al.  Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. , 1998, Current Opinion in Genetics and Development.

[56]  W. Black,et al.  Mitochondrial gene order is not conserved in arthropods: prostriate and metastriate tick mitochondrial genomes. , 1998, Molecular biology and evolution.

[57]  D. Mindell,et al.  Multiple independent origins of mitochondrial gene order in birds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[58]  A. Arndt,et al.  Mitochondrial gene rearrangement in the sea cucumber genus Cucumaria. , 1998, Molecular biology and evolution.

[59]  E. Rayko Organization, generation and replication of amphimeric genomes: a review. , 1997, Gene.

[60]  G. Hewitt,et al.  Insect mitochondrial control region: A review of its structure, evolution and usefulness in evolutionary studies , 1997 .

[61]  M. Nishida,et al.  Gene rearrangements in snake mitochondrial genomes: highly concerted evolution of control-region-like sequences duplicated and inserted into a tRNA gene cluster. , 1996, Molecular biology and evolution.

[62]  M. Kreitman,et al.  Unraveling selection in the mitochondrial genome of Drosophila. , 1994, Genetics.

[63]  D. Rand Endotherms, ectotherms, and mitochondrial genome-size variation , 1993, Journal of Molecular Evolution.

[64]  J. B. Walsh,et al.  Biased gene conversion, copy number, and apparent mutation rate differences within chloroplast and bacterial genomes. , 1992, Genetics.

[65]  C. Moritz,et al.  Parallel origins of duplications and the formation of pseudogenes in mitochondrial DNA from parthenogenetic lizards (Heteronotia binoei; Gekkonidae) , 1991, Journal of Molecular Evolution.

[66]  C. Moritz,et al.  Evolutionary dynamics of mitochondrial DNA duplications in parthenogenetic geckos, Heteronotia binoei. , 1991, Genetics.

[67]  L. V. Valen,et al.  The Archaebacteria and eukaryotic origins , 1980, Nature.

[68]  A. Templeton,et al.  The theory of speciation via the founder principle. , 1980, Genetics.

[69]  W. Brown,et al.  Rapid evolution of animal mitochondrial DNA. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[70]  L. Sagan On the origin of mitosing cells , 1967, Journal of theoretical biology.

[71]  M. Dowton,et al.  The mitochondrial genome of the stingless bee Melipona bicolor (Hymenoptera, Apidae, Meliponini): sequence, gene organization and a unique tRNA translocation event conserved across the tribe Meliponini , 2008 .

[72]  D. Bouchon,et al.  Organization of the large mitochondrial genome in the isopod Armadillidium vulgare. , 1999, Genetics.

[73]  A. Dollin,et al.  Australian Stingless Bees of the Genus Trigona (Hymenoptera:Apidae) , 1997 .

[74]  T. Papenfuss,et al.  Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. , 1997, Molecular biology and evolution.

[75]  D. Wolstenholme,et al.  Animal mitochondrial DNA: structure and evolution. , 1992, International review of cytology.