Magnetic exchange coupling in actinide-containing molecules.

Recent progress in the assembly of actinide-containing coordination clusters has generated systems in which the first glimpses of magnetic exchange coupling can be recognized. Such systems are of interest owing to the prospects for involving 5f electrons in stronger magnetic exchange than has been observed for electrons in the more contracted 4f orbitals of the lanthanide elements. Here, we survey the actinide-containing molecules thought to exhibit magnetic exchange interactions, including multiuranium, uranium-lanthanide, uranium-transition metal, and uranium-radical species. Interpretation of the magnetic susceptibility data for compounds of this type is complicated by the combination of spin-orbit coupling and ligand-field effects arising for actinide ions. Nevertheless, for systems where analogues featuring diamagnetic replacement components for the non-actinide spin centers can be synthesized, a data subtraction approach can be utilized to probe the presence of exchange coupling. In addition, methods have been developed for employing the resulting data to estimate lower and upper bounds for the exchange constant. Emphasis is placed on evaluation of the linear clusters (cyclam)M[(mu-Cl)U(Me(2)Pz)(4)](2) (M = Co, Ni, Cu, Zn; cyclam = 1,4,8,11-tetraazacyclotetradecane; Me(2)Pz(-) = 3,5-dimethylpyrazolate), for which strong ferromagnetic exchange with 15 cm(-1) < or = J < or = 48 cm(-1) is observed for the Co(II)-containing species. Owing to the modular synthetic approach employed, this system in particular offers numerous opportunities for adjusting the strength of the magnetic exchange coupling and the total number of unpaired electrons. To this end, the prospects of such modularity are discussed through the lens of several new related clusters. Ultimately, it is hoped that this research will be of utility in the development of electronic structure models that successfully describe the magnetic behavior of actinide compounds and will perhaps even lead to new actinide-based single-molecule magnets.

[1]  J. Long,et al.  Ferromagnetic exchange coupling in the linear, chloride-bridged cluster (cyclam)CoII[(μ-Cl)UIV(Me2Pz)4]2 , 2008 .

[2]  E. Coronado,et al.  Mononuclear lanthanide single-molecule magnets based on polyoxometalates. , 2008, Journal of the American Chemical Society.

[3]  J. Vittal,et al.  Trinuclear heterobimetallic Ni2Ln complexes [L2Ni2Ln][ClO4] (Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, and Er; LH3=(S)P[N(Me)NCH-C6H3-2-OH-3-OMe]3): from simple paramagnetic complexes to single-molecule magnet behavior. , 2008, Inorganic chemistry.

[4]  C. Anthon,et al.  Structural and spectroscopic characterization of a charge-separated uranium benzophenone ketyl radical complex. , 2008, Journal of the American Chemical Society.

[5]  J. Flament,et al.  Spin-orbit configuration interaction study of the electronic structure of the 5f (2) manifold of U(4+) and the 5f manifold of U(5+). , 2008, The Journal of chemical physics.

[6]  B. Scott,et al.  Mixed valency in a uranium multimetallic complex. , 2008, Angewandte Chemie.

[7]  B. Scott,et al.  Organometallic uranium(V)-imido halide complexes: from synthesis to electronic structure and bonding. , 2008, Journal of the American Chemical Society.

[8]  B. Scott,et al.  Experimental and theoretical comparison of actinide and lanthanide bonding in M[N(EPR(2))(2)](3) complexes (M = U, Pu, La, Ce; E = S, Se, Te; R = Ph, iPr, H). , 2008, Inorganic chemistry.

[9]  V. Tangoulis,et al.  Anisotropic exchange interactions in [Ln3+–FeLS3+] dinuclear systems (Ln3+ = Dy, Tm, Yb): Magnetometry and Dual Mode X-band Electron Paramagnetic Resonance spectroscopic study , 2007 .

[10]  J. Pécaut,et al.  Self-assembly of polyoxo clusters and extended frameworks by controlled hydrolysis of low-valent uranium. , 2007, Angewandte Chemie.

[11]  J. Long,et al.  Magnetic exchange coupling in chloride-bridged 5f-3d heterometallic complexes generated via insertion into a uranium(IV) dimethylpyrazolate dimer. , 2007, Journal of the American Chemical Society.

[12]  S. Koshihara,et al.  Significant increase of the barrier energy for magnetization reversal of a single-4f-ionic single-molecule magnet by a longitudinal contraction of the coordination space. , 2007, Inorganic chemistry.

[13]  Marisa J. Monreal,et al.  Redox processes in a uranium bis(1,1'-diamidoferrocene) complex. , 2007, Inorganic chemistry.

[14]  W. Wernsdorfer,et al.  A record anisotropy barrier for a single-molecule magnet. , 2007, Journal of the American Chemical Society.

[15]  W. Wernsdorfer,et al.  A ferromagnetically coupled mn(19) aggregate with a record S=83/2 ground spin state. , 2006, Angewandte Chemie.

[16]  M. Yamashita,et al.  A binuclear Fe(III)Dy(III) single molecule magnet. Quantum effects and models. , 2006, Journal of the American Chemical Society.

[17]  M. Ephritikhine,et al.  Synthesis, crystal structure and reactivity of uranium(IV) complexes with p-tert-butylcalix[4]arene ligands. , 2006, Dalton transactions.

[18]  D. Ralph,et al.  Signatures of molecular magnetism in single-molecule transport spectroscopy. , 2006, Nano letters.

[19]  W. Wernsdorfer,et al.  Dysprosium triangles showing single-molecule magnet behavior of thermally excited spin states. , 2006, Angewandte Chemie.

[20]  B. Scott,et al.  4f-5f heterotrimetallic complexes exhibiting electrochemical and magnetic communication. , 2006, Journal of the American Chemical Society.

[21]  H. Nojiri,et al.  Oximate-bridged trinuclear Dy-Cu-Dy complex behaving as a single-molecule magnet and its mechanistic investigation. , 2006, Journal of the American Chemical Society.

[22]  M. Ephritikhine,et al.  Synthesis, structure, and magnetic behavior of a series of trinuclear Schiff base complexes of 5f (UIV, ThIV) and 3d (CuII, ZnII) ions. , 2006, Inorganic chemistry.

[23]  M. Ephritikhine,et al.  Lanthanide(III)/actinide(III) differentiation in the cerium and uranium complexes [M(C5Me5)2(L)]0,+ (L=2,2'-bipyridine, 2,2':6',2''-terpyridine): structural, magnetic, and reactivity studies. , 2005, Chemistry.

[24]  D. Barreca,et al.  Electron transport through single Mn12 molecular magnets. , 2005, Physical review letters.

[25]  B. Scott,et al.  Uranium(III)/(IV) Nitrile Adducts Including UI4(N⋮CPh)4, a Synthetically Useful Uranium(IV) Complex , 2005 .

[26]  B. Scott,et al.  Ligand substituent effect observed for ytterbocene 4'-cyano-2,2':6',2' '-terpyridine. , 2005, Inorganic chemistry.

[27]  M. Ephritikhine,et al.  Unprecedented reduction of the uranyl ion [UO2]2+ into a polyoxo uranium(IV) cluster: synthesis and crystal structure of the first f-element oxide with a M6(micro3-O)8 core. , 2005, Chemical communications.

[28]  W. Wernsdorfer,et al.  Quantum tunneling of magnetization in lanthanide single-molecule magnets: bis(phthalocyaninato)terbium and bis(phthalocyaninato)dysprosium anions. , 2005, Angewandte Chemie.

[29]  W. Wernsdorfer,et al.  The search for 3d-4f single-molecule magnets: synthesis, structure and magnetic properties of a [Mn(III)2Dy(III)2] cluster. , 2005, Chemical communications.

[30]  W. Wernsdorfer,et al.  Initial observation of magnetization hysteresis and quantum tunneling in mixed manganese-lanthanide single-molecule magnets. , 2004, Journal of the American Chemical Society.

[31]  J. Ziller,et al.  Structure, reactivity, and density functional theory analysis of the six-electron reductant, [(C5Me5)2U]2(mu-eta6:eta6-C6H6), synthesized via a new mode of (C5Me5)3M reactivity. , 2004, Journal of the American Chemical Society.

[32]  L. Zakharov,et al.  A Linear, O-Coordinated η1-CO2 Bound to Uranium , 2004, Science.

[33]  V. Pecoraro,et al.  Synthesis, structure, and magnetic properties of a large lanthanide-transition-metal single-molecule magnet. , 2004, Angewandte Chemie.

[34]  S. Koshihara,et al.  Mononuclear Lanthanide Complexes with a Long Magnetization Relaxation Time at High Temperatures: A New Category of Magnets at the Single-Molecular Level , 2004 .

[35]  W. Wernsdorfer,et al.  Single-molecule magnets: a Mn25 complex with a record S = 51/2 spin for a molecular species. , 2004, Journal of the American Chemical Society.

[36]  N. Re,et al.  A tetranuclear 3d-4f single molecule magnet: [CuIILTbIII(hfac)2]2. , 2004, Journal of the American Chemical Society.

[37]  J. Pécaut,et al.  Oxidation chemistry of uranium(III) complexes of Tpa: synthesis and structural studies of oxo, hydroxo, and alkoxo complexes of uranium(IV). , 2003, Inorganic chemistry.

[38]  M. Ephritikhine,et al.  Versatility of the nature of the magnetic Cu(II)–U(IV) interaction. Syntheses, crystal structures and magnetic properties of Cu2U and CuU compounds , 2003 .

[39]  S. Koshihara,et al.  Lanthanide double-decker complexes functioning as magnets at the single-molecular level. , 2003, Journal of the American Chemical Society.

[40]  P. Hitchcock,et al.  Reversible binding and reduction of dinitrogen by a uranium(III) pentalene complex. , 2002, Journal of the American Chemical Society.

[41]  C. Cummins,et al.  Diuranium inverted sandwiches involving naphthalene and cyclooctatetraene. , 2002, Journal of the American Chemical Society.

[42]  Dante Gatteschi,et al.  Magnetism of lanthanides in molecular materials with transition-metal ions and organic radicals. , 2002, Chemical reviews.

[43]  J. Marrot,et al.  Syntheses, X-ray crystal structures, and magnetic properties of novel linear M2[II]U[IV] complexes (M=Co, Ni, Cu, Zn). , 2002, Chemistry.

[44]  J. Sutter,et al.  Analytical determination of the [Ln-aminoxyl radical] exchange interaction taking into account both the ligand-field effect and the spin-orbit coupling of the lanthanide ion (Ln = DyIII and HoIII). , 2002, Chemistry.

[45]  Joel S. Miller,et al.  Magnetism: Molecules to Materials V , 2001 .

[46]  B. Scott,et al.  Synthesis and Structural Characterization of the First Uranium Cluster Containing an Isopolyoxometalate Core , 2001 .

[47]  G. Yap,et al.  Highly Reactive Uranium(III) Polypyrrolide Complexes: Intramolecular C−H Bond Activation, Ligand Isomerization, and Solvent Deoxygenation and Fragmentation , 2001 .

[48]  B. Donnadieu,et al.  Versatility of the Nature of the Magnetic Gadolinium(III)−Vanadium(IV) Interaction − Structure and Magnetic Properties of Two Heterobinuclear [Gd, V(O)] Complexes , 2001 .

[49]  F. Dahan,et al.  Is ferromagnetism an intrinsic property of the CuII/GdIII couple? 2. Structures and magnetic properties of novel trinuclear complexes with mu-phenolato-mu-oximato (Cu-Ln-Cu) cores (Ln = La, Ce, Gd). , 2000, Inorganic chemistry.

[50]  Michael N. Leuenberger,et al.  Quantum computing in molecular magnets , 2000, Nature.

[51]  P. Arnold,et al.  Arene-Bridged Diuranium Complexes: Inverted Sandwiches Supported by δ Backbonding , 2000 .

[52]  Girerd,et al.  Synthesis, Crystal Structure, and Magnetic Behavior of Linear MU(IV) Complexes (M=Co, Ni, Cu, Zn). , 2000, Angewandte Chemie.

[53]  M. Ephritikhine,et al.  Synthesis and crystal structure of [U(η-C8H8)]2[μ-η4:η4-HN(CH2)3N(CH2)2N(CH2)3NH], a dinuclear compound with a bridging tetra-amide ligand , 2000 .

[54]  A. Fujishima,et al.  A High-Spin Cyanide-Bridged Mn9W6 Cluster (S = 39/2) with a Full-Capped Cubane Structure , 2000 .

[55]  F. Dahan,et al.  Influence of anionic ligands (X) on the nature and magnetic properties of dinuclear LCuDgX3.nH2O complexes (LH2 standing for tetradentate Schiff base ligands deriving from 2-hydroxy-3-methoxybenzaldehyde and X being Cl, N3C2, and CF3COO). , 2000, Inorganic chemistry.

[56]  C. Mathonière,et al.  Nature of the Interaction between Ln(III) and Cu(II) Ions in the Ladder-Type Compounds {Ln(2)[Cu(opba)](3)}.S (Ln = Lanthanide Element; opba = ortho-Phenylenebis(oxamato), S = Solvent Molecules). , 1999, Inorganic chemistry.

[57]  W. Lukens,et al.  Structures of substituted-cyclopentadienyl uranium(III) dimers and related uranium metallocenes deduced by EXAFS , 1999 .

[58]  M. Ephritikhine,et al.  New Advances in the Chemistry of Uranium Amide Compounds , 1998 .

[59]  F. Dahan,et al.  Nature of the Magnetic Interaction in the (Cu2+, Ln3+) Pairs: An Empirical Approach Based on the Comparison Between Homologous (Cu2+, Ln3+) and (NiLS2+, Ln3+) Complexes , 1998 .

[60]  E. Chudnovsky,et al.  Thermally activated resonant magnetization tunneling in molecular magnets: Mn 12 Ac and others , 1997, cond-mat/9805057.

[61]  C. Carrano,et al.  Synthesis and Structure of a Discrete Hexanuclear Uranium–Phosphate Complex , 1996 .

[62]  A. J. Blake,et al.  Magnetic and Structural Studies of Copper–Lanthanoid Complexes; the Synthesis and Structures of New Cu3Ln Complexes of 6-chloro-2-Pyridone (Ln = Gd, Dy and Er) and Magnetic Studies on Cu2Gd2, Cu4Gd2 and Cu3Gd Complexes , 1995 .

[63]  A. Powell,et al.  Synthesis, Structures, and Magnetic Properties of Fe2, Fe17, and Fe19 Oxo-Bridged Iron Clusters: The Stabilization of High Ground State Spins by Cluster Aggregates , 1995 .

[64]  A. Caneschi,et al.  Magnetic bistability in a metal-ion cluster , 1993, Nature.

[65]  D. Povey,et al.  Synthesis and structural studies of complexes of vanadium(II) and vanadium(III) halides with tertiary phosphines , 1993 .

[66]  Dante Gatteschi,et al.  High-spin molecules: [Mn12O12(O2CR)16(H2O)4] , 1993 .

[67]  Ian D. Williams,et al.  Synthesis and Structural Characterization of Low-Valent Group V Phosphine Complexes , 1992 .

[68]  M. Ephritikhine,et al.  Synthesis and crystal structure of the oxo-bridged bimetallic organouranium complex [(Me3SiC5H4)3U]2[μ-O] , 1991 .

[69]  N. Edelstein,et al.  [(MeC5H4)3U]2[.mu.-1,4-N2C6H4]: a bimetallic molecule with antiferromagnetic coupling between the uranium centers , 1990 .

[70]  B. Foxman,et al.  Octahedral d3 and d4 complexes of molybdenum with 1,2-bis(dimethylphosphino)ethane , 1986 .

[71]  F. Cotton,et al.  Preparation and structure of [U2(C6Me6)2Cl7]+, the first uranium(IV) complex with a neutral arene in .eta.6-coordination , 1985 .

[72]  F. Cotton,et al.  Dinuclear uranium alkoxides. Preparation and structures of KU2(OCMe3)9, U2(OCMe3)9, and U2(OCHMe2)10, containing [uranium(IV), uranium(IV)], [uranium(IV), uranium(V)], and [uranium(V), uranium(V)], respectively , 1984 .

[73]  H. Crosswhite,et al.  Spectrum analysis of U3+:LaCl3 , 1980 .

[74]  J. Reynolds,et al.  Crystal structure and optical and magnetic properties of tetrakis(diethylamido)uranium(IV), a five-coordinate dimeric complex in the solid state , 1976 .

[75]  M. Aresta,et al.  Hidrido-complexes of iron(IV) and iron(II) , 1971 .

[76]  H. Nöth,et al.  Notizen: Metall-Bor-Verbindungen, II , 1965 .

[77]  M. Ephritikhine,et al.  Structure and magnetism of the first strictly dinuclear compound containing paramagnetic 3d and 5f metal ions. Major influence of the CuII ion coordination on the exchange CuII–UIV interaction , 2003 .

[78]  K. Meyer,et al.  Uranium complexes supported by an aryloxide functionalised triazacyclononane macrocycle: synthesis and characterisation of a six-coordinate U(III) species and insights into its reactivity. , 2002, Chemical communications.

[79]  G. Wilkinson,et al.  Bis[1,2-bis(dimethylphosphino)ethane]dichlorotungsten(II) and its reactions. X-ray crystal structures of bis[1,2-bis(dimethylphosphino)ethane]tetrachlorotungsten(V) hexachloroantimonate(V) and bis{bis]1,2-bis(dimethylphosphino)ethane]tetrahydroaluminatohydridomolybdenum(II)} , 1991 .

[80]  G. Wilkinson,et al.  Synthesis and properties of the divalent 1,2-bis(dimethylphosphino)ethane (dmpe) complexes MCl2(dmpe)2 and MMe2(dmpe)2 (M=Ti, V, Cr, Mn, or Fe). X-ray crystal structures of MCl2(dmpe)2 (M=Ti, V, or Cr), MnBr2(dmpe)2, TiMe1.3Cl0.7(dmpe)2, and CrMe2(dmpe)2 , 1985 .

[81]  E. A. Boudreaux,et al.  Theory and applications of molecular diamagnetism , 1976 .