Application of Fibonacci collocation method for solving Volterra-Fredholm integral equations
暂无分享,去创建一个
[1] Salih Yalçinbas. Taylor polynomial solutions of nonlinear Volterra-Fredholm integral equations , 2002, Appl. Math. Comput..
[2] Esmail Babolian,et al. Numerical solutions of the nonlinear Volterra-Fredholm integral equations by using homotopy perturbation method , 2007, Appl. Math. Comput..
[3] Yadollah Ordokhani,et al. Solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via rationalized Haar functions , 2006, Appl. Math. Comput..
[4] Mohsen Razzaghi,et al. Legendre wavelets method for the nonlinear Volterra-Fredholm integral equations , 2005, Math. Comput. Simul..
[5] T. A. Zang,et al. Spectral Methods: Fundamentals in Single Domains , 2010 .
[6] Mehmet Sezer,et al. A Taylor collocation method for the approximate solution of general linear Fredholm-Volterra integro-difference equations with mixed argument , 2006, Appl. Math. Comput..
[7] Alfio Quarteroni,et al. Spectral and Pseudo-Spectral Approximations of the Navier–Stokes Equations , 1982 .
[8] Mehmet Sezer,et al. The approximate solution of high-order linear Volterra-Fredholm integro-differential equations in terms of Taylor polynomials , 2000, Appl. Math. Comput..
[9] Keyan Wang,et al. Lagrange collocation method for solving Volterra-Fredholm integral equations , 2013, Appl. Math. Comput..
[10] Keyan Wang,et al. Taylor collocation method and convergence analysis for the Volterra-Fredholm integral equations , 2014, J. Comput. Appl. Math..
[11] J. Mason,et al. Integration Using Chebyshev Polynomials , 2003 .
[12] Khosrow Maleknejad,et al. Taylor polynomial solution of high-order nonlinear Volterra-Fredholm integro-differential equations , 2003, Appl. Math. Comput..
[13] E. Kreyszig. Introductory Functional Analysis With Applications , 1978 .
[14] M. Golberg,et al. Discrete projection methods for integral equations , 1996 .
[15] A. Wazwaz. Linear and Nonlinear Integral Equations: Methods and Applications , 2011 .
[16] Yanping Chen,et al. Spectral methods for weakly singular Volterra integral equations with smooth solutions , 2009, J. Comput. Appl. Math..
[17] Jan S. Hesthaven,et al. Spectral Methods for Time-Dependent Problems: Contents , 2007 .
[18] Rafael Benítez,et al. Existence and uniqueness of nontrivial collocation solutions of implicitly linear homogeneous Volterra integral equations , 2011, J. Comput. Appl. Math..
[19] Elçin Yusufoglu,et al. Numerical expansion methods for solving Fredholm-Volterra type linear integral equations by interpolation and quadrature rules , 2008, Kybernetes.
[20] J. Kauthen,et al. Continuous time collocation methods for Volterra-Fredholm integral equations , 1989 .