Application of Fibonacci collocation method for solving Volterra-Fredholm integral equations

In this paper, a new matrix method based on Fibonacci polynomials and collocation points is proposed for numerically solving the Volterra-Fredholm integral equations. In fact, the approximate solution of the problem in the truncated Fibonacci series form is obtained by this method. Also, convergence analysis of the proposed method is provided under several mild conditions. The reliability and efficiency of the proposed scheme are demonstrated by some numerical experiments.

[1]  Salih Yalçinbas Taylor polynomial solutions of nonlinear Volterra-Fredholm integral equations , 2002, Appl. Math. Comput..

[2]  Esmail Babolian,et al.  Numerical solutions of the nonlinear Volterra-Fredholm integral equations by using homotopy perturbation method , 2007, Appl. Math. Comput..

[3]  Yadollah Ordokhani,et al.  Solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via rationalized Haar functions , 2006, Appl. Math. Comput..

[4]  Mohsen Razzaghi,et al.  Legendre wavelets method for the nonlinear Volterra-Fredholm integral equations , 2005, Math. Comput. Simul..

[5]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[6]  Mehmet Sezer,et al.  A Taylor collocation method for the approximate solution of general linear Fredholm-Volterra integro-difference equations with mixed argument , 2006, Appl. Math. Comput..

[7]  Alfio Quarteroni,et al.  Spectral and Pseudo-Spectral Approximations of the Navier–Stokes Equations , 1982 .

[8]  Mehmet Sezer,et al.  The approximate solution of high-order linear Volterra-Fredholm integro-differential equations in terms of Taylor polynomials , 2000, Appl. Math. Comput..

[9]  Keyan Wang,et al.  Lagrange collocation method for solving Volterra-Fredholm integral equations , 2013, Appl. Math. Comput..

[10]  Keyan Wang,et al.  Taylor collocation method and convergence analysis for the Volterra-Fredholm integral equations , 2014, J. Comput. Appl. Math..

[11]  J. Mason,et al.  Integration Using Chebyshev Polynomials , 2003 .

[12]  Khosrow Maleknejad,et al.  Taylor polynomial solution of high-order nonlinear Volterra-Fredholm integro-differential equations , 2003, Appl. Math. Comput..

[13]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .

[14]  M. Golberg,et al.  Discrete projection methods for integral equations , 1996 .

[15]  A. Wazwaz Linear and Nonlinear Integral Equations: Methods and Applications , 2011 .

[16]  Yanping Chen,et al.  Spectral methods for weakly singular Volterra integral equations with smooth solutions , 2009, J. Comput. Appl. Math..

[17]  Jan S. Hesthaven,et al.  Spectral Methods for Time-Dependent Problems: Contents , 2007 .

[18]  Rafael Benítez,et al.  Existence and uniqueness of nontrivial collocation solutions of implicitly linear homogeneous Volterra integral equations , 2011, J. Comput. Appl. Math..

[19]  Elçin Yusufoglu,et al.  Numerical expansion methods for solving Fredholm-Volterra type linear integral equations by interpolation and quadrature rules , 2008, Kybernetes.

[20]  J. Kauthen,et al.  Continuous time collocation methods for Volterra-Fredholm integral equations , 1989 .