Genomics of enterobacteriaceae

Enterobacteria were among the earliest targets for genome sequencing and are still the most densely sampled clade of bacteria in the genomics arena. Twenty complete genome sequences are available for members of the family as of September 2004, and the NCBI list of genomes in progress includes another 20 enterobacteria. This is undoubtedly an underestimate of the sequences that will be available for enterobacteria in the coming two years. Among the complete genomes are representatives of nine genera, including Escherichia, Shigella, Salmonella, Yersinia, Erwinia, Buchnera, Photorhabdus, Wigglesworthia, and Candidatus Blochmannia. Genomes in progress will add additional strains and species of these, as well as additional genera such as Klebsiella, Proteus, Citrobacter, Enterobacter, Dickeya, and Pantoea. Among these are standard laboratory research strains, human pathogens, livestock pathogens, plant pathogens, and insect endosymbionts. Each genome sequence aids in understanding the biology of the individual organism, but some of the greatest insights come from comparisons between the genomes. For many of these genera, sequences are available for multiple species or strains, providing unique perspectives on genome-wide polymorphism. Enterobacteria are also very experimentally tractable, and we are beginning to see a boom in downstream research making use of the sequences. Keywords: genomes; enterobacteria; E. coli, pathogens; endosymbionts; comparative genomics; horizontal transfer; rearrangement; evolution

[1]  Ruifu Yang,et al.  Defining the genome content of live plague vaccines by use of whole-genome DNA microarray. , 2004, Vaccine.

[2]  M. Woodward,et al.  Mutation of toxB and a Truncated Version of the efa-1 Gene in Escherichia coli O157:H7 Influences the Expression and Secretion of Locus of Enterocyte Effacement-Encoded Proteins but not Intestinal Colonization in Calves or Sheep , 2004, Infection and Immunity.

[3]  Ruifu Yang,et al.  DNA Microarray Analysis of Genome Dynamics in Yersinia pestis: Insights into Bacterial Genome Microevolution and Niche Adaptation , 2004, Journal of bacteriology.

[4]  A. Fraser,et al.  Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[5]  F. Blattner,et al.  Mauve: multiple alignment of conserved genomic sequence with rearrangements. , 2004, Genome research.

[6]  Mark J. Pallen,et al.  The ETT2 Gene Cluster, Encoding a Second Type III Secretion System from Escherichia coli, Is Present in the Majority of Strains but Has Undergone Widespread Mutational Attrition , 2004, Journal of bacteriology.

[7]  C. Médigue,et al.  Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Huanming Yang,et al.  Complete genome sequence of Yersinia pestis strain 91001, an isolate avirulent to humans. , 2004, DNA research : an international journal for rapid publication of reports on genes and genomes.

[9]  S. Andersson,et al.  Evolution of minimal-gene-sets in host-dependent bacteria. , 2004, Trends in microbiology.

[10]  R. Brubaker The Recent Emergence of Plague: A Process of Felonious Evolution , 2004, Microbial Ecology.

[11]  M. Riley,et al.  A molecular phylogeny of enteric bacteria and implications for a bacterial species concept , 2003, Journal of evolutionary biology.

[12]  A. Danchin,et al.  The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens , 2003, Nature Biotechnology.

[13]  N. Moran,et al.  Tracing the evolution of gene loss in obligate bacterial symbionts. , 2003, Current opinion in microbiology.

[14]  N. Moran,et al.  From Gene Trees to Organismal Phylogeny in Prokaryotes:The Case of the γ-Proteobacteria , 2003, PLoS biology.

[15]  R. Nichols,et al.  Application of DNA microarrays to study the evolutionary genomics of Yersinia pestis and Yersinia pseudotuberculosis. , 2003, Genome research.

[16]  N. Moran,et al.  Phylogenetics and the Cohesion of Bacterial Genomes , 2003, Science.

[17]  E. Boyd,et al.  Differences in Gene Content among Salmonella enterica Serovar Typhi Isolates , 2003, Journal of Clinical Microbiology.

[18]  Jürgen Gadau,et al.  The genome sequence of Blochmannia floridanus: Comparative analysis of reduced genomes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[19]  S M Payne,et al.  Complete Genome Sequence and Comparative Genomics of Shigella flexneri Serotype 2a Strain 2457T , 2003, Infection and Immunity.

[20]  Guy Plunkett,et al.  Comparative Genomics of Salmonellaenterica Serovar Typhi Strains Ty2 and CT18 , 2003, Journal of bacteriology.

[21]  Michael K. Gilson,et al.  ASAP, a systematic annotation package for community analysis of genomes , 2003, Nucleic Acids Res..

[22]  F. Blattner,et al.  Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Alyssa C. Bumbaugh,et al.  Inferences from whole-genome sequences of bacterial pathogens. , 2002, Current opinion in genetics & development.

[24]  Hidemi Watanabe,et al.  Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia , 2002, Nature Genetics.

[25]  J. Wernegreen,et al.  Genome evolution in bacterial endosymbionts of insects , 2002, Nature Reviews Genetics.

[26]  Jie Dong,et al.  Genome sequence of Shigella flexneri 2a: insights into pathogenicity through comparison with genomes of Escherichia coli K12 and O157. , 2002, Nucleic acids research.

[27]  Ruiting Lan,et al.  Escherichia coli in disguise: molecular origins of Shigella. , 2002, Microbes and infection.

[28]  Guy Plunkett,et al.  Genome Sequence of Yersinia pestis KIM , 2002, Journal of bacteriology.

[29]  N. Moran,et al.  50 Million Years of Genomic Stasis in Endosymbiotic Bacteria , 2002, Science.

[30]  N. Perna CHAPTER 1 – The Genomes of Escherichia coli K-12 and Pathogenic E. coli , 2002 .

[31]  N. Moran,et al.  The process of genome shrinkage in the obligate symbiont Buchnera aphidicola , 2001, Genome Biology.

[32]  R. Wilson,et al.  Complete genome sequence of Salmonella enterica serovar Typhimurium LT2 , 2001, Nature.

[33]  Kim Rutherford,et al.  Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18 , 2001, Nature.

[34]  M. Simmonds,et al.  Genome sequence of Yersinia pestis, the causative agent of plague , 2001, Nature.

[35]  K. Kurokawa,et al.  Diversification of Escherichia coli genomes: are bacteriophages the major contributors? , 2001, Trends in microbiology.

[36]  N. W. Davis,et al.  Genome sequence of enterohaemorrhagic Escherichia coli O157:H7 , 2001, Nature.

[37]  M. Hattori,et al.  Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. , 2001, DNA research : an international journal for rapid publication of reports on genes and genomes.

[38]  S. Salzberg,et al.  Evidence for symmetric chromosomal inversions around the replication origin in bacteria , 2000, Genome Biology.

[39]  M. Hattori,et al.  Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS , 2000, Nature.

[40]  Alyssa C. Bumbaugh,et al.  Parallel evolution of virulence in pathogenic Escherichia coli , 2000, Nature.

[41]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[42]  J. Hacker,et al.  Adhesin regulatory genes within large, unstable DNA regions of pathogenic Escherichia coli: cross‐talk between different adhesin gene clusters , 1994, Molecular microbiology.

[43]  J. M. Smith,et al.  How clonal are bacteria? , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[44]  A. Danchin,et al.  Evidence for horizontal gene transfer in Escherichia coli speciation. , 1991, Journal of molecular biology.