Superconvergence analysis of two-grid methods for bacteria equations

In this paper, two-grid methods (TGMs) are developed for a system of reaction-diffusion equations of bacterial infection with initial and boundary conditions. The backward Euler (B-E) and Crank–Nicolson (C-N) fully discrete schemes are established, and the existence and uniqueness of the solutions of these schemes are proved. Moreover, based on the combination technique of the interpolation and Ritz projection and derivative transfer trick which are important ingredients in the TGMs, the superclose estimates of order O ( h 2 + H 4 + τ ) and O ( h 2 + H 4 + τ 2 ) in H 1 -norm are deduced for the above schemes, respectively, where h is fine mesh size, H is coarse mesh size, and τ is time step size. Then, by the interpolated postprocessing approach, the corresponding global superconvergence results are obtained. Finally, some other popular finite elements are discussed and numerical results are provided to verify the theoretical analysis, which show that the computing cost of TGMs are only half of Galerkin finite element methods (FEMs) for the test problem.

[1]  V Capasso,et al.  Asymptotic stability for an integrodifferential reaction-diffusion system☆ , 1984 .

[2]  C. Pao,et al.  Almost periodic plane wave solutions for reaction diffusion equations , 1985 .

[3]  Dongyang Shi,et al.  High accuracy analysis of the lowest order H1-Galerkin mixed finite element method for nonlinear sine-Gordon equations , 2017 .

[4]  Dongyang Shi,et al.  Superconvergence analysis of a two-grid method for semilinear parabolic equations , 2018, Appl. Math. Lett..

[5]  Sebastian Anita,et al.  A stabilizability problem for a reaction-diffusion system modelling a class of spatially structured epidemic systems , 2002 .

[6]  Jinchao Xu,et al.  Two‐grid methods for time‐harmonic Maxwell equations , 2013, Numer. Linear Algebra Appl..

[7]  Q. Lin,et al.  Superconvergence and extrapolation of non-conforming low order finite elements applied to the Poisson equation , 2005 .

[8]  Shao-chunChen,et al.  AN ANISOTROPIC NONCONFORMING FINITE ELEMENT WITH SOME SUPERCONVERGENCE RESULTS , 2005 .

[9]  Zhenguo Bai A periodic reaction–diffusion system modelling man–environment–man epidemics , 2017 .

[10]  Sigrid Leyendecker,et al.  Variational integrators for orbital problems using frequency estimation , 2019, Adv. Comput. Math..

[11]  Karl Kunisch,et al.  A reaction-diffusion system arising in modelling man-environment diseases , 1988 .

[12]  Jinchao Xu,et al.  Superconvergence of the gradient in piecewise linear finite-element approximation to a parabolic problem , 1989 .

[13]  Qun Lin,et al.  Finite element methods : accuracy and improvement = 有限元方法 : 精度及其改善 , 2006 .

[14]  Shi Dong-yang CONVERGENCE ANALYSIS OF THE NONCONFORMING TRIANGULAR CAREY ELEMENT FOR A KIND OF NONLINEAR PARABOLIC INTEGRO-DIFFERENTIAL PROBLEMS , 2009 .

[15]  Dongyang Shi,et al.  ACCURACY ANALYSIS FOR QUASI-CAREY ELEMENT* , 2008, J. Syst. Sci. Complex..

[16]  Jinchao Xu Two-grid Discretization Techniques for Linear and Nonlinear PDEs , 1996 .

[17]  Jinchao Xu,et al.  A Novel Two-Grid Method for Semilinear Elliptic Equations , 1994, SIAM J. Sci. Comput..

[18]  R. Rannacher,et al.  Simple nonconforming quadrilateral Stokes element , 1992 .

[19]  Shaochun Chen,et al.  Error estimates for rotated Q1rot element approximation of the eigenvalue problem on anisotropic meshes , 2009, Appl. Math. Lett..

[20]  Dongyang Shi,et al.  Nonconforming quadrilateral finite element method for a class of nonlinear sine-Gordon equations , 2013, Appl. Math. Comput..

[21]  Yinnian He,et al.  A multilevel finite element method in space‐time for the Navier‐Stokes problem , 2005 .

[22]  V Capasso,et al.  Convergence to equilibrium states for a reaction-diffusion system modelling the spatial spread of a class of bacterial and viral diseases , 1981, Journal of mathematical biology.

[23]  Vincenzo Capasso,et al.  Analysis of a Reaction-Diffusion System Modeling Man-Environment-Man Epidemics , 1997, SIAM J. Appl. Math..

[24]  Fenling Wang,et al.  Superconvergence analysis and extrapolation of quasi-Wilson nonconforming finite element method for nonlinear Sobolev equations , 2013 .

[25]  Dongyang Shi,et al.  Superconvergence analysis of an H1-Galerkin mixed finite element method for Sobolev equations , 2016, Comput. Math. Appl..

[26]  Zhen Jin,et al.  Efficient numerical methods for spatially extended population and epidemic models with time delay , 2018, Appl. Math. Comput..

[27]  Yanping Chen,et al.  Two-grid finite element methods combined with Crank-Nicolson scheme for nonlinear Sobolev equations , 2018, Adv. Comput. Math..

[28]  L. Pei,et al.  Analysis of Nonconforming Finite Element Method for Bacterial Model , 2011 .

[29]  Zhong-Ci Shi,et al.  A new superconvergence property of Wilson nonconforming finite element , 1997 .

[30]  Yinnian He,et al.  Two-Level Method Based on Finite Element and Crank-Nicolson Extrapolation for the Time-Dependent Navier-Stokes Equations , 2003, SIAM J. Numer. Anal..

[31]  Dongyang Shi,et al.  Unconditional optimal error estimates of a two-grid method for semilinear parabolic equation , 2017, Appl. Math. Comput..

[32]  Jinchao Xu,et al.  Error estimates on a new nonlinear Galerkin method based on two-grid finite elements , 1995 .

[33]  Luoping Chen,et al.  Two‐Grid method for nonlinear parabolic equations by expanded mixed finite element methods , 2013 .

[34]  Yanping Chen,et al.  Two-Grid Method for Nonlinear Reaction-Diffusion Equations by Mixed Finite Element Methods , 2011, J. Sci. Comput..