On evaluation of Bessel transforms with oscillatory and algebraic singular integrands

In this paper, we study efficient methods for computing the integrals of the form @!"0^1x^a(1-x)^bf(x)J"v(@wx)dx, where a,b,v,@w are the given constants and @w@?1, J"v is the Bessel function of the first kind and of order v, f is a sufficiently smooth function on [0,1]. Firstly, we express the moments in a closed form with the aid of special functions. Secondly, we induce the Filon-type method based on the Taylor interpolation polynomial at two endpoints and the Hermite interpolation polynomial at Clenshaw-Curtis points on evaluating the highly oscillatory Bessel integrals with algebraic singularity. Theoretical results and numerical experiments perform that the methods are very efficient in obtaining very high precision approximations if @w is sufficiently large.

[1]  Shuhuang Xiang,et al.  Letter to the editor: on quadrature of Bessel transformations , 2005 .

[2]  Ruyun Chen Numerical approximations to integrals with a highly oscillatory Bessel kernel , 2012 .

[3]  G. Arfken Mathematical Methods for Physicists , 1967 .

[4]  C. W. Clenshaw,et al.  A method for numerical integration on an automatic computer , 1960 .

[5]  Sheehan Olver,et al.  Numerical approximation of vector-valued highly oscillatory integrals , 2007 .

[6]  Daan Huybrechs,et al.  On the Evaluation of Highly Oscillatory Integrals by Analytic Continuation , 2006, SIAM J. Numer. Anal..

[7]  Daan Huybrechs,et al.  A Sparse Discretization for Integral Equation Formulations of High Frequency Scattering Problems , 2007, SIAM J. Sci. Comput..

[8]  R. Piessens,et al.  An extension of Clenshaw-Curtis quadrature , 1975 .

[9]  David Levin,et al.  Procedures for computing one- and two-dimensional integrals of functions with rapid irregular oscillations , 1982 .

[10]  A. Iserles,et al.  Efficient quadrature of highly oscillatory integrals using derivatives , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  T. J. Rivlin The Chebyshev polynomials , 1974 .

[12]  R. Piessens Gaussian Quadrature Formulae for Integrals Involving Bessel Functions , 1972 .

[13]  S. Xiang Efficient Filon-type methods for $$\int_a^bf(x)\,{\rm e}^{{\rm i}\omega g(x)}\,{\rm d}x$$ , 2007 .

[14]  I. M. Longman,et al.  A method for the numerical evaluation of finite integrals of oscillatory functions , 1960 .

[15]  Weiwei Sun,et al.  The superconvergence of Newton–Cotes rules for the Hadamard finite-part integral on an interval , 2008, Numerische Mathematik.

[16]  Shuhuang Xiang,et al.  Clenshaw–Curtis–Filon-type methods for highly oscillatory Bessel transforms and applications , 2011 .

[17]  Lloyd N. Trefethen,et al.  Is Gauss Quadrature Better than Clenshaw-Curtis? , 2008, SIAM Rev..

[18]  Dugald B. Duncan,et al.  Stability and Convergence of Collocation Schemes for Retarded Potential Integral Equations , 2004, SIAM J. Numer. Anal..

[19]  J. R. Webster,et al.  A high order, progressive method for the evaluation of irregular oscillatory integrals , 1997 .

[20]  L. Filon III.—On a Quadrature Formula for Trigonometric Integrals. , 1930 .

[21]  P. Davis Interpolation and approximation , 1965 .

[22]  Weiwei Sun,et al.  A Fast Algorithm for the Electromagnetic Scattering from a Large Cavity , 2005, SIAM J. Sci. Comput..

[23]  M. Powell,et al.  Approximation theory and methods , 1984 .

[24]  Ruyun Chen,et al.  Asymptotic expansions of Bessel, Anger and Weber transformations , 2010 .

[25]  R. Piessens,et al.  Modified clenshaw-curtis method for the computation of Bessel function integrals , 1983 .

[26]  Shuhuang Xiang,et al.  Note on the homotopy perturbation method for multivariate vector-value oscillatory integrals , 2009, Appl. Math. Comput..

[27]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .