On evaluation of Bessel transforms with oscillatory and algebraic singular integrands
暂无分享,去创建一个
[1] Shuhuang Xiang,et al. Letter to the editor: on quadrature of Bessel transformations , 2005 .
[2] Ruyun Chen. Numerical approximations to integrals with a highly oscillatory Bessel kernel , 2012 .
[3] G. Arfken. Mathematical Methods for Physicists , 1967 .
[4] C. W. Clenshaw,et al. A method for numerical integration on an automatic computer , 1960 .
[5] Sheehan Olver,et al. Numerical approximation of vector-valued highly oscillatory integrals , 2007 .
[6] Daan Huybrechs,et al. On the Evaluation of Highly Oscillatory Integrals by Analytic Continuation , 2006, SIAM J. Numer. Anal..
[7] Daan Huybrechs,et al. A Sparse Discretization for Integral Equation Formulations of High Frequency Scattering Problems , 2007, SIAM J. Sci. Comput..
[8] R. Piessens,et al. An extension of Clenshaw-Curtis quadrature , 1975 .
[9] David Levin,et al. Procedures for computing one- and two-dimensional integrals of functions with rapid irregular oscillations , 1982 .
[10] A. Iserles,et al. Efficient quadrature of highly oscillatory integrals using derivatives , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[11] T. J. Rivlin. The Chebyshev polynomials , 1974 .
[12] R. Piessens. Gaussian Quadrature Formulae for Integrals Involving Bessel Functions , 1972 .
[13] S. Xiang. Efficient Filon-type methods for $$\int_a^bf(x)\,{\rm e}^{{\rm i}\omega g(x)}\,{\rm d}x$$ , 2007 .
[14] I. M. Longman,et al. A method for the numerical evaluation of finite integrals of oscillatory functions , 1960 .
[15] Weiwei Sun,et al. The superconvergence of Newton–Cotes rules for the Hadamard finite-part integral on an interval , 2008, Numerische Mathematik.
[16] Shuhuang Xiang,et al. Clenshaw–Curtis–Filon-type methods for highly oscillatory Bessel transforms and applications , 2011 .
[17] Lloyd N. Trefethen,et al. Is Gauss Quadrature Better than Clenshaw-Curtis? , 2008, SIAM Rev..
[18] Dugald B. Duncan,et al. Stability and Convergence of Collocation Schemes for Retarded Potential Integral Equations , 2004, SIAM J. Numer. Anal..
[19] J. R. Webster,et al. A high order, progressive method for the evaluation of irregular oscillatory integrals , 1997 .
[20] L. Filon. III.—On a Quadrature Formula for Trigonometric Integrals. , 1930 .
[21] P. Davis. Interpolation and approximation , 1965 .
[22] Weiwei Sun,et al. A Fast Algorithm for the Electromagnetic Scattering from a Large Cavity , 2005, SIAM J. Sci. Comput..
[23] M. Powell,et al. Approximation theory and methods , 1984 .
[24] Ruyun Chen,et al. Asymptotic expansions of Bessel, Anger and Weber transformations , 2010 .
[25] R. Piessens,et al. Modified clenshaw-curtis method for the computation of Bessel function integrals , 1983 .
[26] Shuhuang Xiang,et al. Note on the homotopy perturbation method for multivariate vector-value oscillatory integrals , 2009, Appl. Math. Comput..
[27] Philip Rabinowitz,et al. Methods of Numerical Integration , 1985 .