ANNIHILATOR CONDITIONS IN MATRIX AND SKEW POLYNOMIAL RINGS

Let R be a ring with an endomorphism α and α-derivation δ. By [A. R. Nasr-Isfahani and A. Moussavi, Ore extensions of skew Armendariz rings, Comm. Algebra 36(2) (2008) 508–522], a ring R is called a skew Armendariz ring, if for polynomials f(x) = a0 + a1 x + ⋯ + anxn, g(x) = b0+b1x + ⋯ + bmxm in R[x; α, δ], f(x)g(x) = 0 implies a0bj = 0 for each 0 ≤ j ≤ m. In this paper, radicals of the skew polynomial ring R[x; α, δ], in terms of a skew Armendariz ring R, is determined. We prove that several properties transfer between R and R[x; α, δ], in case R is an α-compatible skew Armendariz ring. We also identify some "relatively maximal" skew Armendariz subrings of matrix rings, and obtain a necessary and sufficient condition for a trivial extension to be skew Armendariz. Consequently, new families of non-reduced skew Armendariz rings are presented and several known results related to Armendariz rings and skew polynomial rings will be extended and unified.

[1]  A. Alhevaz,et al.  The McCoy Condition on Ore Extensions , 2013 .

[2]  A. Alhevaz,et al.  On Rings Having McCoy-Like Conditions , 2012 .

[3]  Yang Lee,et al.  Radicals of skew polynomial rings and skew Laurent polynomial rings , 2011 .

[4]  G. Marks,et al.  A UNIFIED APPROACH TO VARIOUS GENERALIZATIONS OF ARMENDARIZ RINGS , 2010, Bulletin of the Australian Mathematical Society.

[5]  Ramon Antoine Nilpotent elements and Armendariz rings , 2008 .

[6]  Pace P. Nielsen,et al.  McCoy rings and zero-divisors , 2008 .

[7]  A. Moussavi,et al.  Ore Extensions of Skew Armendariz Rings , 2008 .

[8]  Wenkang Wang Maximal Semicommutative Subrings of Upper Triangular Matrix Rings , 2008 .

[9]  Yiqiang Zhou,et al.  A unified approach to the Armendariz property of polynomial rings and power series rings , 2008 .

[10]  W. Tong,et al.  On skew Armendariz rings and rigid rings , 2007 .

[11]  T. Kwak,et al.  Extensions of Generalized Armendariz Rings , 2006 .

[12]  Zhanping Wang,et al.  Polynomial Rings over Symmetric Rings Need Not Be Symmetric , 2006 .

[13]  M. Baser Ore extensions of zip and reversible rings , 2006 .

[14]  Yang Lee,et al.  Basic examples and extensions of symmetric rings , 2005 .

[15]  A. Moussavi,et al.  Polynomial extensions of quasi-Baer rings , 2005 .

[16]  T. Kwak,et al.  Extensions of zip rings , 2005 .

[17]  A. Moussavi,et al.  ON (α, δ)-SKEW ARMENDARIZ RINGS , 2005 .

[18]  Yiqiang Zhou,et al.  Armendariz and Reduced Rings , 2004 .

[19]  Yang Lee,et al.  Extensions of reversible rings , 2003 .

[20]  G. Marks A taxonomy of 2-primal rings , 2003 .

[21]  T. Kwak,et al.  On Skew Armendariz Rings , 2003 .

[22]  Y. Hirano On annihilator ideals of a polynomial ring over a noncommutative ring , 2002 .

[23]  A. Smoktunowicz,et al.  ARMENDARIZ RINGS AND SEMICOMMUTATIVE RINGS , 2002 .

[24]  A. Smoktunowicz Polynomial Rings over Nil Rings Need Not Be Nil , 2000 .

[25]  T. Kwak,et al.  Ore extensions of Baer and p.p.-rings , 2000 .

[26]  Yang Lee,et al.  Armendariz Rings and Reduced Rings , 2000 .

[27]  D. D. Anderson,et al.  Semigroups and rings whose zero products commute , 1999 .

[28]  D. D. Anderson,et al.  Armendariz rings and gaussian rings , 1998 .

[29]  T. Lam,et al.  Primeness, semiprimeness and prime radical of ore extensions , 1997 .

[30]  C. Ferran Zip rings and mal'cev domains , 1991 .

[31]  C. Faith Rings with zero intersection property on annihilators : zip rings. , 1989 .

[32]  K. Kishimoto,et al.  On differential rings and skew pulynomials , 1985 .

[33]  K. Kishimoto,et al.  On Radicals of Skew Polynomial Rings of Derivation Type , 1983 .

[34]  J. Zelmanowitz The finite intersection property on annihilator right ideals , 1976 .

[35]  E. Armendariz A note on extensions of Baer and P. P. -rings , 1974, Journal of the Australian Mathematical Society.

[36]  J. Krempa Radicals of semi-group rings , 1974 .

[37]  J. Krempa Logical connections between some open problems concerning nil rings , 1972 .

[38]  J. Lambek On the Representation of Modules by Sheaves of Factor Modules , 1971, Canadian Mathematical Bulletin.

[39]  H. Bell Near-rings in which each element is a power of itself , 1970, Bulletin of the Australian Mathematical Society.

[40]  S. A. Amitsur Radicals Of Polynomial Rings , 1956, Canadian Journal of Mathematics.

[41]  A. S. Amitsur Algebras over infinite fields , 1956 .