Predicting Listening Item Difficulty with Language Complexity Measures: A Comparative Data Mining Study

[1]  Cullen Schaffer Overfitting avoidance as bias , 2004, Machine Learning.

[2]  Philip M. McCarthy,et al.  Using temporal cohesion to predict temporal coherence in narrative and expository texts , 2007, Behavior research methods.

[3]  L. Gao,et al.  Toward a Cognitive Processing Model of MELAB Reading Test Item Performance , 2006 .

[4]  Roy Freedle,et al.  The Prediction of SAT Reading Comprehension Item Difficulty for Expository Prose Passages. PRPC Final Report P/J 969-60. , 1991 .

[5]  Scott A. Crossley,et al.  Using lexical indices to predict produced and not produced words in second language learners , 2010 .

[6]  C. Goh,et al.  Investigating the Construct Validity of the MELAB Listening Test through the Rasch Analysis and Correlated Uniqueness Modeling , 2010 .

[7]  John S. Knox,et al.  An Investigation of the relations between test-takers' first language and the discourse of written performance on the IELTS Academic Writing Test, Task 2 , 2013 .

[8]  Douglas Biber,et al.  Should we use characteristics of conversation to measure grammatical complexity in L2 writing development , 2011 .

[9]  Susan Nissan,et al.  AN ANALYSIS OF FACTORS AFFECTING THE DIFFICULTY OF DIALOGUE ITEMS IN TOEFL LISTENING COMPREHENSION , 1995 .

[10]  Dirk Cattrysse,et al.  Cost estimation for sheet metal parts using multiple regression and artificial neural networks: A case study , 2008 .

[11]  Danielle S. McNamara,et al.  Assessing L2 reading texts at the intermediate level: An approximate replication of Crossley, Louwerse, McCarthy & McNamara (2007) , 2008, Language Teaching.

[12]  Leslie Grant,et al.  Using Computer-Tagged Linguistic Features to Describe L2 Writing Differences , 2000 .

[13]  John Field Into the mind of the academic listener , 2011 .

[14]  K. Green Effects of Item Characteristics on Multiple-Choice Item Difficulty , 1984 .

[15]  Gengsheng Qin,et al.  Improved confidence intervals for the sensitivity at a fixed level of specificity of a continuous-scale diagnostic test. , 2005, Statistics in medicine.

[16]  Eunice Eunhee Jang,et al.  Cognitive diagnostic assessment of L2 reading comprehension ability: Validity arguments for Fusion Model application to LanguEdge assessment , 2009 .

[17]  K. Tatsuoka,et al.  Application of the rule-space procedure to language testing: examining attributes of a free response listening test , 1998 .

[18]  Carla E. Brodley,et al.  Multivariate decision trees , 2004, Machine Learning.

[19]  C. Goh,et al.  Analysis of Test Takers’ Metacognitive and Cognitive Strategy Use and EFL Reading Test Performance:A Multi-Sample SEM Approach , 2014 .

[20]  Vahid Aryadoust,et al.  An Investigation of Differential Item Functioning in the MELAB Listening Test , 2011 .

[21]  Bonnie J. F. Meyer,et al.  Effects of Discourse Type on Recall , 1984 .

[22]  Patrick Webb,et al.  Classification and Regression Trees, CART: A User Manual For Identifying Indicators of Vulnerability to Famine And Chronic Food Insecurity , 1999 .

[23]  C. Fox,et al.  Applying the Rasch Model: Fundamental Measurement in the Human Sciences , 2001 .

[24]  Arthur C. Graesser,et al.  Newness and givenness of information: Automated identification in written discourse , 2012 .

[25]  H. Schäfer,et al.  Regional confidence bands for ROC curves. , 2000, Statistics in medicine.

[26]  L. Taylor,et al.  Examining Listening: Research And Practice In Assessing Second Language Listening , 2013 .

[27]  G. Buck Assessing Listening , 2001 .

[28]  Yong Wang,et al.  Using Model Trees for Classification , 1998, Machine Learning.

[29]  R C Rowe,et al.  Advantages of neurofuzzy logic against conventional experimental design and statistical analysis in studying and developing direct compression formulations. , 2009, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[30]  Yasuyo Sawaki,et al.  CRITERION‐RELATED VALIDITY OF THE TOEFL IBT LISTENING SECTION , 2009 .

[31]  Y. F. Cheong Analysis of School Context Effects on Differential Item Functioning Using Hierarchical Generalized Linear Models , 2006 .

[32]  Arthur C. Graesser,et al.  Question Understanding Aid (QUAID) A Web Facility that Tests Question Comprehensibility , 2006 .

[33]  D. Steinberg CART: Classification and Regression Trees , 2009 .

[34]  Kathleen M. Sheehan,et al.  A TREE‐BASED APPROACH TO PROFICIENCY SCALING , 1997 .

[35]  B. Tabachnick,et al.  Using Multivariate Statistics , 1983 .

[36]  Arthur C. Graesser,et al.  Using LSA to Automatically Identify Givenness and Newness of Noun Phrases in Written Discourse , 2005 .

[37]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[38]  R. Freedle,et al.  The prediction of TOEFL reading item difficulty: implications for construct validity , 1993 .

[39]  Danielle S. McNamara,et al.  Predicting the proficiency level of language learners using lexical indices , 2012 .

[40]  J. Nadal,et al.  What can we learn from synaptic weight distributions? , 2007, Trends in Neurosciences.

[41]  Huan Liu,et al.  Discretization: An Enabling Technique , 2002, Data Mining and Knowledge Discovery.

[42]  Victoria Chou Hare Text Effects on Main Idea Comprehension. , 1989 .

[43]  John A. Swets,et al.  Signal Detection Theory and ROC Analysis in Psychology and Diagnostics: Collected Papers , 1996 .

[44]  K. Tatsuoka Cognitive Assessment: An Introduction to the Rule Space Method , 2009 .

[45]  I. Kostin Exploring Item Characteristics That Are Related to the Difficulty of TOEFL Dialogue Items. Research Reports. RR-79. RR-04-11. , 2004 .

[46]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[47]  W. Hays Using Multivariate Statistics , 1983 .

[48]  R. Freedle,et al.  Does the text matter in a multiple-choice test of comprehension? the case for the construct validity of TOEFL's minitalks , 1999 .

[49]  Joseph E. Grimes,et al.  The Thread of Discourse , 1984 .

[50]  Walter Kintsch,et al.  Toward a model of text comprehension and production. , 1978 .

[51]  Arthur C. Graesser,et al.  Validating Coh-Metrix , 2006 .

[52]  Danielle S. McNamara,et al.  Text simplification and comprehensible input: A case for an intuitive approach , 2012 .

[53]  Birgit Henriksen,et al.  Vocabulary acquisition: acquiring depth of knowledge through network building , 2000 .

[54]  C. Fann,et al.  On the use of multifactor dimensionality reduction (MDR) and classification and regression tree (CART) to identify haplotype-haplotype interactions in genetic studies. , 2011, Genomics.

[55]  Yasuyo Sawaki,et al.  Q-Matrix Construction: Defining the Link Between Constructs and Test Items in Large-Scale Reading and Listening Comprehension Assessments , 2009 .

[56]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[57]  Paula Garcia,et al.  Combining Multiple Regression and CART to Understand Difficulty in Second Language Reading and Listening Comprehension Test Items , 2001 .

[58]  J. Alderson,et al.  Re-examining the content validation of a grammar test: The (im)possibility of distinguishing vocabulary and structural knowledge , 2013 .

[59]  K. Tatsuoka RULE SPACE: AN APPROACH FOR DEALING WITH MISCONCEPTIONS BASED ON ITEM RESPONSE THEORY , 1983 .

[60]  Yasuyo Sawaki,et al.  Criterion-Related Validity of the TOEFL iBT Listening Section. TOEFL iBT Research Report. RR-09-02. , 2009 .

[61]  Philip M. McCarthy,et al.  Linguistic Features of Writing Quality , 2010 .

[62]  D. Burdick,et al.  HOW TO MODEL AND TEST FOR THE MECHANISMS THAT MAKE MEASUREMENT SYSTEMS TICK , 2011 .

[63]  D. McNamara,et al.  Assessing Text Readability Using Cognitively Based Indices , 2008 .

[64]  Roy Freedle,et al.  The Prediction of GRE Reading Comprehension Item Difficulty for Expository Prose Passages for Each of Three Item Types: Main Ideas, Inferences and Explicit Statements. GRE Board Professional Report No. 87-10P. , 1991 .

[65]  Danielle S. McNamara,et al.  Predicting lexical proficiency in language learner texts using computational indices , 2011 .

[66]  D. McNamara,et al.  A Linguistic Analysis of Simplified and Authentic Texts , 2007 .

[67]  I. Kostin,et al.  The Subskills of Reading: Rule‐space Analysis of a Multiple‐choice Test of Second Language Reading Comprehension , 1997 .

[68]  J. Stevens Applied Multivariate Statistics for the Social Sciences , 1986 .

[69]  R. Gonzalez Applied Multivariate Statistics for the Social Sciences , 2003 .

[70]  Danielle S. McNamara,et al.  Predicting human judgments of essay quality in both integrated and independent second language writing samples: A comparison study , 2013 .

[71]  Kristen L. Huff An item modeling approach to descriptive score reports. , 2003 .

[72]  Kyle Perkins,et al.  Predicting item difficulty in a reading comprehension test with an artificial neural network , 1995 .

[73]  Rolph E. Anderson,et al.  Multivariate Data Analysis (7th ed. , 2009 .

[74]  B. Davey Factors Affecting the Difficulty of Reading Comprehension Items for Successful and Unsuccessful Readers , 1988 .

[75]  Khaled Barkaoui Using Multilevel Modeling in Language Assessment Research: A Conceptual Introduction , 2013 .

[76]  Priscilla A. Drum,et al.  The Effects of Surface Structure Variables on Performance in Reading Comprehension Tests. , 1981 .

[77]  D. McNamara,et al.  Cohesion, coherence, and expert evaluations of writing proficiency , 2010 .

[78]  Sundaram Suresh,et al.  Human action recognition using Meta-Cognitive Neuro-Fuzzy Inference System , 2012, IJCNN.

[79]  ITEM DIFFICULTY ADJUSTMENT STUDY: GRE VERBAL DISCRETES , 1992 .

[80]  W. Todd Rogers,et al.  Use of tree-based regression in the analyses of L2 reading test items , 2011 .

[81]  Marcel Adam Just,et al.  Sentence comprehension: A psycholinguistic processing model of verification. , 1975 .

[82]  Hyunjoong Kim,et al.  Classification Trees With Unbiased Multiway Splits , 2001 .

[83]  Sven F. Crone,et al.  A study on the ability of Support Vector Regression and Neural Networks to Forecast Basic Time Series Patterns , 2006, IFIP AI.

[84]  M. Just,et al.  From the SelectedWorks of Marcel Adam Just 1992 A capacity theory of comprehension : Individual differences in working memory , 2017 .

[85]  S. Embretson,et al.  Component Latent Trait Models for Paragraph Comprehension Tests , 1987 .

[86]  Ingo Ruczinski,et al.  Logic Regression — Methods and Software , 2003 .

[87]  Yasuyo Sawaki,et al.  Cognitive Diagnosis Approaches to Language Assessment: An Overview , 2009 .

[88]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[89]  Vahid Aryadoust,et al.  Predicting item difficulty in a language test with an adaptive neuro fuzzy inference system , 2013, 2013 IEEE Workshop on Hybrid Intelligent Models and Applications (HIMA).

[90]  The effects of the number of options on the psychometric characteristics of multiple choice items , 2011 .

[91]  R. Freedle,et al.  THE PREDICTION OF TOEFL LISTENING COMPREHENSION ITEM DIFFICULTY FOR MINITALK PASSAGES: IMPLICATIONS FOR CONSTRUCT VALIDITY , 1996 .

[92]  R. O’Brien,et al.  A Caution Regarding Rules of Thumb for Variance Inflation Factors , 2007 .

[93]  Roy Freedle,et al.  THE PREDICTION OF TOEFL READING COMPREHENSION ITEM DIFFICULTY FOR EXPOSITORY PROSE PASSAGES FOR THREE ITEM TYPES: MAIN IDEA, INFERENCE, AND SUPPORTING IDEA ITEMS , 1993 .