A simple recipe for negatively refracting metamaterials via homogenization

A strategy for achieving negative phase velocity (NPV) in a homogenized composite material (HCM) involves constituent material phases that do not support NPV propagation. The HCM and its constituent phases are isotropic dielectric-magnetic materials. The real parts of their permittivities are negative-valued whereas the real parts of their permeabilities are positive-valued (or vice versa). The constituent material phases are randomly distributed as spherical particles. The Bruggeman homogenization formalism indicates that the HCM can support NPV propagation, the extended Bruggeman homogenization formalism suggests that increasing the dimensions of the constituent particles diminishes the scope for NPV propagation in the HCM, and the strong-permittivity- fluctuation theory further shows that the propensity of the HCM to support NPV propagation is sensitive to the distributional statistics of the constituent material particles and diminishes as the correlation length increases.

[1]  A. Stogryn,et al.  The bilocal approximation for the electric field in strong fluctuation theory , 1983 .

[2]  L. Ward,et al.  The Optical Constants of Bulk Materials and Films , 1988 .

[3]  J. Kong,et al.  Scattering of electromagnetic waves from random media with strong permittivity fluctuations. [with application to atmospheric turbulence effects on microwave remote sensing] , 1981 .

[4]  Tom G. Mackay,et al.  Positive-, negative-, and orthogonal-phase-velocity propagation of electromagnetic plane waves in a simply moving medium , 2007 .

[5]  Tom G. Mackay,et al.  Homogenization of Linear and Nonlinear Complex Composite Materials , 2003 .

[6]  M. Wegener,et al.  Negative-index metamaterial at 780 nm wavelength. , 2006, Optics letters.

[7]  Tom G. Mackay,et al.  Correlation length and negative phase velocity in isotropic dielectric-magnetic materials , 2006 .

[8]  Tom G. Mackay,et al.  Negative phase velocity in isotropic dielectric-magnetic media via homogenization: Part II , 2005 .

[9]  V. Shalaev Optical negative-index metamaterials , 2007 .

[10]  S. Ramakrishna,et al.  Physics of negative refractive index materials , 2005 .

[11]  A. Lakhtakia,et al.  A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity , 2003 .

[12]  Lakhtakia,et al.  Strong-property-fluctuation theory for homogenization of bianisotropic composites: formulation , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  T. G. Mackay,et al.  Size-Dependent Bruggeman Approach for Dielectric-Magnetic Composite Materials , 2005 .

[14]  Tom G. Mackay,et al.  Negative phase velocity in isotropic dielectric-magnetic mediums via homogenization , 2005 .

[15]  Martin W. McCall,et al.  Negative Phase-Velocity Mediums , 2003 .

[16]  Pennsylvania State University,et al.  A limitation of the Bruggeman formalism for homogenization , 2004 .