A simple recipe for negatively refracting metamaterials via homogenization
暂无分享,去创建一个
[1] A. Stogryn,et al. The bilocal approximation for the electric field in strong fluctuation theory , 1983 .
[2] L. Ward,et al. The Optical Constants of Bulk Materials and Films , 1988 .
[3] J. Kong,et al. Scattering of electromagnetic waves from random media with strong permittivity fluctuations. [with application to atmospheric turbulence effects on microwave remote sensing] , 1981 .
[4] Tom G. Mackay,et al. Positive-, negative-, and orthogonal-phase-velocity propagation of electromagnetic plane waves in a simply moving medium , 2007 .
[5] Tom G. Mackay,et al. Homogenization of Linear and Nonlinear Complex Composite Materials , 2003 .
[6] M. Wegener,et al. Negative-index metamaterial at 780 nm wavelength. , 2006, Optics letters.
[7] Tom G. Mackay,et al. Correlation length and negative phase velocity in isotropic dielectric-magnetic materials , 2006 .
[8] Tom G. Mackay,et al. Negative phase velocity in isotropic dielectric-magnetic media via homogenization: Part II , 2005 .
[9] V. Shalaev. Optical negative-index metamaterials , 2007 .
[10] S. Ramakrishna,et al. Physics of negative refractive index materials , 2005 .
[11] A. Lakhtakia,et al. A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity , 2003 .
[12] Lakhtakia,et al. Strong-property-fluctuation theory for homogenization of bianisotropic composites: formulation , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[13] T. G. Mackay,et al. Size-Dependent Bruggeman Approach for Dielectric-Magnetic Composite Materials , 2005 .
[14] Tom G. Mackay,et al. Negative phase velocity in isotropic dielectric-magnetic mediums via homogenization , 2005 .
[15] Martin W. McCall,et al. Negative Phase-Velocity Mediums , 2003 .
[16] Pennsylvania State University,et al. A limitation of the Bruggeman formalism for homogenization , 2004 .