DeBi: Discovering Differentially Expressed Biclusters using a Frequent Itemset Approach
暂无分享,去创建一个
[1] Ting Wang,et al. An improved map of conserved regulatory sites for Saccharomyces cerevisiae , 2006, BMC Bioinformatics.
[2] Nicola J. Rinaldi,et al. Transcriptional regulatory code of a eukaryotic genome , 2004, Nature.
[3] Jill P. Mesirov,et al. Subclass Mapping: Identifying Common Subtypes in Independent Disease Data Sets , 2007, PloS one.
[4] Christian von Mering,et al. STRING 8—a global view on proteins and their functional interactions in 630 organisms , 2008, Nucleic Acids Res..
[5] Ulrich Bodenhofer,et al. FABIA: factor analysis for bicluster acquisition , 2010, Bioinform..
[6] W. Markesbery,et al. Impaired Proteasome Function in Alzheimer's Disease , 2000, Journal of neurochemistry.
[7] Arlindo L. Oliveira,et al. Biclustering algorithms for biological data analysis: a survey , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.
[8] B. Pugh,et al. Identification and Distinct Regulation of Yeast TATA Box-Containing Genes , 2004, Cell.
[9] J. A. Hartigan,et al. A k-means clustering algorithm , 1979 .
[10] Yudong D. He,et al. Functional Discovery via a Compendium of Expression Profiles , 2000, Cell.
[11] Richard M. Karp,et al. Discovering local structure in gene expression data: the order-preserving submatrix problem , 2002, RECOMB '02.
[12] Ying Xu,et al. QUBIC: a qualitative biclustering algorithm for analyses of gene expression data , 2009, Nucleic acids research.
[13] T. M. Murali,et al. Automatic layout and visualization of biclusters , 2006, Algorithms for Molecular Biology.
[14] T. M. Murali,et al. Extracting Conserved Gene Expression Motifs from Gene Expression Data , 2002, Pacific Symposium on Biocomputing.
[15] Fang Liu,et al. The Ubiquitin-Proteasome Pathway Mediates Gelsolin Protein Downregulation in Pancreatic Cancer , 2008, Molecular medicine.
[16] Sven Bergmann,et al. Iterative signature algorithm for the analysis of large-scale gene expression data. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[17] Justin Lamb,et al. The Connectivity Map: a new tool for biomedical research , 2007, Nature Reviews Cancer.
[18] Stuart K. Calderwood,et al. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications , 2005, Cell stress & chaperones.
[19] Roded Sharan,et al. Discovering statistically significant biclusters in gene expression data , 2002, ISMB.
[20] Robert R. Sokal,et al. A statistical method for evaluating systematic relationships , 1958 .
[21] Karuturi R. Krishna Murthy,et al. Differential co-expression framework to quantify goodness of biclusters and compare biclustering algorithms , 2010, Algorithms for Molecular Biology.
[22] Xiaogang Wang,et al. A roadmap of clustering algorithms: finding a match for a biomedical application , 2008, Briefings Bioinform..
[23] Maurice K. Wong,et al. Algorithm AS136: A k-means clustering algorithm. , 1979 .
[24] Johannes Gehrke,et al. MAFIA: a maximal frequent itemset algorithm for transactional databases , 2001, Proceedings 17th International Conference on Data Engineering.
[25] L. Staudt,et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. , 2002, The New England journal of medicine.
[26] Eckart Zitzler,et al. BicAT: a biclustering analysis toolbox , 2006, Bioinform..
[27] J. Hartigan. Direct Clustering of a Data Matrix , 1972 .
[28] Lothar Thiele,et al. A systematic comparison and evaluation of biclustering methods for gene expression data , 2006, Bioinform..
[29] Ron Shamir,et al. EXPANDER – an integrative program suite for microarray data analysis , 2005, BMC Bioinformatics.
[30] George M. Church,et al. Biclustering of Expression Data , 2000, ISMB.