α-parvin controls chondrocyte column formation and regulates long bone development

[1]  Y. Usami,et al.  Nutrient-regulated dynamics of chondroprogenitors in the postnatal murine growth plate , 2023, Bone research.

[2]  B. Snyder,et al.  A FoxA2+ long-term stem cell population is necessary for growth plate cartilage regeneration after injury , 2022, Nature Communications.

[3]  Jillian E. Beveridge,et al.  A2M inhibits inflammatory mediators of chondrocytes by blocking IL‐1β/NF‐κB pathway , 2022, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[4]  R. Satija,et al.  Comparison and evaluation of statistical error models for scRNA-seq , 2022, Genome Biology.

[5]  H. Kronenberg,et al.  Chondrocytes in the resting zone of the growth plate are maintained in a Wnt-inhibitory environment , 2020, bioRxiv.

[6]  Raphael Gottardo,et al.  Integrated analysis of multimodal single-cell data , 2020, Cell.

[7]  J. Vilo,et al.  gprofiler2 -- an R package for gene list functional enrichment analysis and namespace conversion toolset g:Profiler , 2020, F1000Research.

[8]  M. Hess,et al.  α-parvin is required for epidermal morphogenesis, hair follicle development and basal keratinocyte polarity , 2020, PloS one.

[9]  H. Clausen‐Schaumann,et al.  Mice Lacking the Matrilin Family of Extracellular Matrix Proteins Develop Mild Skeletal Abnormalities and Are Susceptible to Age-Associated Osteoarthritis , 2020, International journal of molecular sciences.

[10]  W. Ono,et al.  Growth Plate Chondrocytes: Skeletal Development, Growth and Beyond , 2019, International journal of molecular sciences.

[11]  Di Chen,et al.  The microRNAs miR-204 and miR-211 maintain joint homeostasis and protect against osteoarthritis progression , 2019, Nature Communications.

[12]  V. Rosen,et al.  Protein Cytl1: its role in chondrogenesis, cartilage homeostasis, and disease , 2019, Cellular and Molecular Life Sciences.

[13]  Y. Matsushita,et al.  Growth Plate Borderline Chondrocytes Behave as Transient Mesenchymal Precursor Cells , 2019, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[14]  Noelle François,et al.  Possible Contribution of Wnt‐Responsive Chondroprogenitors to the Postnatal Murine Growth Plate , 2019, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[15]  R. Satija,et al.  Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression , 2019, Genome Biology.

[16]  H. Qian,et al.  A radical switch in clonality reveals a stem cell niche in the epiphyseal growth plate , 2019, Nature.

[17]  S. Fraser,et al.  Discs large 1 controls daughter-cell polarity after cytokinesis in vertebrate morphogenesis , 2018, Proceedings of the National Academy of Sciences.

[18]  H. Kronenberg,et al.  Resting zone of the growth plate harbors a unique class of skeletal stem cells , 2018, Nature.

[19]  N. Inagaki,et al.  Live imaging analysis of the growth plate in a murine long bone explanted culture system , 2018, Scientific Reports.

[20]  Jaewoo Kang,et al.  Kruppel-Like Factor 4 Positively Regulates Autoimmune Arthritis in Mouse Models and Rheumatoid Arthritis in Patients via Modulating Cell Survival and Inflammation Factors of Fibroblast-Like Synoviocyte , 2018, Front. Immunol..

[21]  E. Montanez,et al.  Parvins Are Required for Endothelial Cell–Cell Junctions and Cell Polarity During Embryonic Blood Vessel Formation , 2018, Arteriosclerosis, thrombosis, and vascular biology.

[22]  D. Bouvard,et al.  β1 integrins mediate the BMP2 dependent transcriptional control of osteoblast differentiation and osteogenesis , 2018, PloS one.

[23]  Ang Li,et al.  Planar cell polarity signaling coordinates oriented cell division and cell rearrangement in clonally expanding growth plate cartilage , 2017, eLife.

[24]  M. Kurosaka,et al.  Expression and Functions of Immediate Early Response Gene X-1 (IEX-1) in Rheumatoid Arthritis Synovial Fibroblasts , 2016, PloS one.

[25]  S. Zahler,et al.  Endothelial Alpha-Parvin Controls Integrity of Developing Vasculature and Is Required for Maintenance of Cell–Cell Junctions , 2015, Circulation research.

[26]  David S. Koos,et al.  Dynamic imaging of the growth plate cartilage reveals multiple contributors to skeletal morphogenesis , 2015, Nature Communications.

[27]  Liu Yang,et al.  Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation , 2014, Proceedings of the National Academy of Sciences.

[28]  Baojiang Chen,et al.  A dynamic cell adhesion surface regulates tissue architecture in growth plate cartilage , 2014, Development.

[29]  D. Docheva,et al.  Integrin signaling in skeletal development and function. , 2014, Birth defects research. Part C, Embryo today : reviews.

[30]  M. Hattori,et al.  CTRP3 plays an important role in the development of collagen-induced arthritis in mice. , 2014, Biochemical and biophysical research communications.

[31]  R. Fässler,et al.  The ILK/PINCH/parvin complex: the kinase is dead, long live the pseudokinase! , 2010, The EMBO journal.

[32]  R. Fässler,et al.  α‐parvin controls vascular mural cell recruitment to vessel wall by regulating RhoA/ROCK signalling , 2009, The EMBO journal.

[33]  R. Fässler,et al.  Integrin-linked kinase is an adaptor with essential functions during mouse development , 2009, Nature.

[34]  A. Aszódi,et al.  β1 Integrin Deficiency Results in Multiple Abnormalities of the Knee Joint* , 2009, The Journal of Biological Chemistry.

[35]  O. Medalia,et al.  Profilin 1 is required for abscission during late cytokinesis of chondrocytes , 2009, The EMBO journal.

[36]  R. Fässler,et al.  Genetic and cell biological analysis of integrin outside-in signaling. , 2009, Genes & development.

[37]  B. Roysam,et al.  Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. , 2008, Cell stem cell.

[38]  F. Clayton,et al.  Conditional deletion of β1 integrins in the intestinal epithelium causes a loss of Hedgehog expression, intestinal hyperplasia, and early postnatal lethality , 2006, The Journal of cell biology.

[39]  Adam Byron,et al.  Integrin ligands at a glance , 2006, Journal of Cell Science.

[40]  I. Shapiro,et al.  Fate of the hypertrophic chondrocyte: microenvironmental perspectives on apoptosis and survival in the epiphyseal growth plate. , 2005, Birth defects research. Part C, Embryo today : reviews.

[41]  J. Sepulveda,et al.  Cellular and Molecular Life Sciences Review The parvins , 2005 .

[42]  Chuanyue Wu The PINCH-ILK-parvin complexes: assembly, functions and regulation. , 2004, Biochimica et biophysica acta.

[43]  Tomohiko Fukuda,et al.  PINCH-1 Is an Obligate Partner of Integrin-linked Kinase (ILK) Functioning in Cell Shape Modulation, Motility, and Survival* , 2003, Journal of Biological Chemistry.

[44]  A. Aszódi,et al.  Beta1 integrins regulate chondrocyte rotation, G1 progression, and cytokinesis. , 2003, Genes & development.

[45]  S. Dedhar,et al.  Reduced chondrocyte proliferation and chondrodysplasia in mice lacking the integrin-linked kinase in chondrocytes , 2003, The Journal of cell biology.

[46]  A. Aszódi,et al.  Integrin‐linked kinase regulates chondrocyte shape and proliferation , 2003, EMBO reports.

[47]  Richard O Hynes,et al.  Integrins Bidirectional, Allosteric Signaling Machines , 2002, Cell.

[48]  Scott E Fraser,et al.  Convergent extension: the molecular control of polarized cell movement during embryonic development. , 2002, Developmental cell.

[49]  Ola Nilsson,et al.  The role of the resting zone in growth plate chondrogenesis. , 2002, Endocrinology.

[50]  D. Salter,et al.  Chondrocyte heterogeneity: immunohistologically defined variation of integrin expression at different sites in human fetal knees. , 1995, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[51]  E. Hunziker Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes , 1994, Microscopy research and technique.

[52]  François Graner,et al.  Can Surface Adhesion Drive Cell-rearrangement? Part I: Biological Cell-sorting , 1993 .

[53]  Yasuji Sawada,et al.  Can Surface Adhesion Drive Cell Rearrangement? Part II: A Geometrical Model , 1993 .

[54]  G. Tanentzapf,et al.  Integrin-mediated adhesion and stem-cell-niche interactions , 2009, Cell and Tissue Research.

[55]  E. Mackie,et al.  Endochondral ossification: how cartilage is converted into bone in the developing skeleton. , 2008, The international journal of biochemistry & cell biology.

[56]  K. Legate,et al.  ILK, PINCH and parvin: the tIPP of integrin signalling , 2006, Nature Reviews Molecular Cell Biology.