Agile optical confocal microscopy instrument architectures for high flexibility imaging

Ideally, a no-moving parts fast and agile scanning confocal microscope system is required that can produce true real-time 3-D scans with precision and repeatability. In this paper, such agile optical confocal microsopy designs are proposed that enable high speed precise non-invasive 3-D imaging. These compact confocal microscopes can provide real-time pin-point focussed imaging to enable confocal slices in-vivo, thus greatly reducing motion artifacts. These microscopes can be modified into interferometric microscopes for phase contrast imaging. The proposed microscopes can also greatly improve confocal fluorescence imaging as needed for cancer detection. An ultracompact confocal probe tip connected to a single ultra-thin fiber is another design option allowing flexibility for usage in tight cavities.

[1]  S. Achilefu,et al.  Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform. , 2001, Journal of biomedical optics.

[2]  Nabeel A. Riza Advances in three-dimensional reversible photonic modules for phased-array control , 1996, Optics & Photonics.

[3]  M. Dejule,et al.  Three-terminal adaptive nematic liquid-crystal lens device. , 1994, Optics letters.

[4]  G. Pedrini,et al.  Focus-wavelength encoded optical profilometer , 1984 .

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  S.A. Khan,et al.  Fully programmable high speed polarization multiplexed optical scanner , 2002, The 15th Annual Meeting of the IEEE Lasers and Electro-Optics Society.

[7]  K Bahlmann,et al.  Polarization effects in 4Pi confocal microscopy studied with water-immersion lenses. , 2000, Applied optics.

[8]  D. Davies,et al.  Optical coherence-domain reflectometry: a new optical evaluation technique. , 1987, Optics letters.

[9]  G. Mourou,et al.  Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy. , 2000, Optics letters.

[10]  M. Gu,et al.  Principles Of Three-Dimensional Imaging In Confocal Microscopes , 1996 .

[11]  B E Bouma,et al.  Spectrally encoded miniature endoscopy. , 2002, Optics letters.

[12]  Nabeel A. Riza,et al.  High-speed fiber optic probe for dynamic blood analysis measurements , 2000, European Conference on Biomedical Optics.

[13]  B Masters,et al.  Three-dimensional confocal microscopy of the living in situ rabbit cornea. , 1998, Optics express.

[14]  N. Riza Liquid crystal-based optical time delay units for phased array antennas , 1994 .

[15]  R. Webb,et al.  Spectrally encoded confocal microscopy. , 1998, Optics letters.

[16]  J. Fujimoto,et al.  In vivo ultrahigh-resolution optical coherence tomography. , 1999, Optics letters.

[17]  N A Riza,et al.  Free-space wavelength-multiplexed optical scanner. , 2001, Applied optics.

[18]  R. Webb,et al.  Video-rate confocal scanning laser microscope for imaging human tissues in vivo. , 1999, Applied optics.

[19]  T. Yatagai,et al.  Non-mechanically-axial-scanning confocal microscope using adaptive mirror switching. , 2003, Optics express.

[20]  J. Izatt,et al.  Optimal interferometer designs for optical coherence tomography. , 1999, Optics letters.

[21]  Nabeel A. Riza,et al.  Photonically controlled ultrasonic arrays: scenarios and systems , 1996, 1996 IEEE Ultrasonics Symposium. Proceedings.

[22]  R. Webb,et al.  Fiber-coupled multiplexed confocal microscope. , 2000, Optics letters.

[23]  Nabeel A. Riza,et al.  Liquid crystal-based optical control of phased array antennas , 1992 .

[24]  Z. Yaqoob,et al.  High-Speed Scanning Probes for Internal and External Cavity Biomedical Optics , 2002 .

[25]  Nabeel A. Riza,et al.  Reconfigurable wavelength add-drop filtering based on a Banyan network topology and ferroelectric liquid crystal fiber-optic switches , 1999 .