Matched-filtering and parameter estimation of ringdown waveforms

Using recent results from numerical relativity simulations of nonspinning binary black hole mergers, we revisit the problem of detecting ringdown waveforms and of estimating the source parameters, considering both LISA and Earth-based interferometers. We find that Advanced LIGO and EGO could detect intermediate-mass black holes of mass up to {approx}10{sup 3}M{sub {center_dot}} out to a luminosity distance of a few Gpc. For typical multipolar energy distributions, we show that the single-mode ringdown templates presently used for ringdown searches in the LIGO data stream can produce a significant event loss (>10% for all detectors in a large interval of black hole masses) and very large parameter estimation errors on the black hole's mass and spin. We estimate that more than {approx}10{sup 6} templates would be needed for a single-stage multimode search. Therefore, we recommend a ''two-stage'' search to save on computational costs: single-mode templates can be used for detection, but multimode templates or Prony methods should be used to estimate parameters once a detection has been made. We update estimates of the critical signal-to-noise ratio required to test the hypothesis that two or more modes are present in the signal and to resolve their frequencies, showing that second-generation Earth-based detectors andmore » LISA have the potential to perform no-hair tests.« less

[1]  Don H. Johnson,et al.  Statistical Signal Processing , 2009, Encyclopedia of Biometrics.

[2]  P. Ajith,et al.  A phenomenological template family for black-hole coalescence waveforms , 2007, 0704.3764.

[3]  H. Nakano,et al.  Second and Higher-Order Quasinormal Modes in Binary Black Hole Mergers , 2007, 0704.3467.

[4]  M. Pitkin,et al.  Evidence-based search method for gravitational waves from neutron star ring-downs , 2007, gr-qc/0703138.

[5]  A. Pai,et al.  Response of resonant gravitational wave detectors to damped sinusoid signals , 2007 .

[6]  José A. González,et al.  Inspiral, merger, and ringdown of unequal mass black hole binaries: A multipolar analysis , 2007, gr-qc/0703053.

[7]  José A. González,et al.  Mining information from binary black hole mergers: A Comparison of estimation methods for complex exponentials in noise , 2007, gr-qc/0701086.

[8]  S. McWilliams,et al.  Binary black hole late inspiral: Simulations for gravitational wave observations , 2006, gr-qc/0612117.

[9]  A. Buonanno,et al.  Inspiral, merger and ring-down of equal-mass black-hole binaries , 2006, gr-qc/0610122.

[10]  J. Lasota Physics of accretion flows around compact objects , 2006, astro-ph/0607453.

[11]  L. Goggin Search for black hole ringdown signals in LIGO S4 data , 2006 .

[12]  C. Broeck,et al.  Phenomenology of amplitude-corrected post-Newtonian gravitational waveforms for compact binary inspiral: I. Signal-to-noise ratios , 2006, gr-qc/0607092.

[13]  R. O’Shaughnessy,et al.  Observing IMBH-IMBH Binary Coalescences via Gravitational Radiation , 2006, astro-ph/0605732.

[14]  E. Berti,et al.  Erratum: Eigenvalues and eigenfunctions of spin-weighted spheroidal harmonics in four and higher dimensions [Phys. Rev. D 73, 024013 (2006)] , 2006 .

[15]  E. Berti LISA observations of massive black hole mergers: event rates and issues in waveform modelling , 2006, astro-ph/0602470.

[16]  A. Sintes,et al.  Parameter estimation of compact binaries using the inspiral and ringdown waveforms , 2006, gr-qc/0601072.

[17]  C. Will,et al.  Gravitational-wave spectroscopy of massive black holes with the space interferometer LISA , 2005, gr-qc/0512160.

[18]  E. Berti,et al.  Eigenvalues and eigenfunctions of spin-weighted spheroidal harmonics in four and higher dimensions , 2005, gr-qc/0511111.

[19]  H. Nakano,et al.  Black-hole ringdown search in TAMA300: matched filtering and event selections , 2005 .

[20]  T. Damour,et al.  Erratum: Comparison of search templates for gravitational waves from binary inspiral [Phys. Rev. D 63, 044023 (2001)] , 2005 .

[21]  L. Finn,et al.  Improving the efficiency of the detection of gravitational wave signals from inspiraling compact binaries: Chebyshev interpolation , 2005, gr-qc/0507011.

[22]  Peyman Milanfar,et al.  On the resolvability of sinusoids with nearby frequencies in the presence of noise , 2005, IEEE Transactions on Signal Processing.

[23]  R. Narayan Black holes in astrophysics , 2005, gr-qc/0506078.

[24]  Peyman Milanfar,et al.  Local detectors for high-resolution spectral analysis: Algorithms and performance , 2005, Digit. Signal Process..

[25]  A. Buonanno,et al.  Estimating spinning binary parameters and testing alternative theories of gravity with LISA , 2004, gr-qc/0411129.

[26]  H. Nakano,et al.  On detection of black hole quasinormal ringdowns: Detection efficiency and waveform parameter determination in matched filtering , 2004, gr-qc/0410037.

[27]  H. Nakano,et al.  An Improved Template Space for Gravitational Ringing of Black Holes , 2004, gr-qc/0403069.

[28]  T. Bulik,et al.  The First Stellar Binary Black Holes: The Strongest Gravitational Wave Burst Sources , 2004, astro-ph/0403361.

[29]  A. Loeb,et al.  Detection of Gravitational Waves from the Coalescence of Population III Remnants with Advanced LIGO , 2003, astro-ph/0312080.

[30]  B. Krishnan,et al.  Black-hole spectroscopy: testing general relativity through gravitational-wave observations , 2003, gr-qc/0309007.

[31]  H. Nakano,et al.  An Effective Search Method for Gravitational Ringing of Black Holes , 2003, gr-qc/0306082.

[32]  T. Damour,et al.  A Comparison of search templates for gravitational waves from binary inspiral , 2000, gr-qc/0010009.

[33]  H. Nollert Quasinormal modes: the characteristic `sound' of black holes and neutron stars , 1999 .

[34]  Kostas D. Kokkotas,et al.  Quasi-Normal Modes of Stars and Black Holes , 1999, Living reviews in relativity.

[35]  J. Creighton Search techniques for gravitational waves from black-hole ringdowns , 1999, gr-qc/9901084.

[36]  T. Damour,et al.  Improved filters for gravitational waves from inspiraling compact binaries , 1997, gr-qc/9708034.

[37]  S. Hughes,et al.  Measuring gravitational waves from binary black hole coalescences. I. Signal to noise for inspiral, merger, and ringdown , 1997, gr-qc/9701039.

[38]  Mohanty,et al.  Hierarchical search strategy for the detection of gravitational waves from coalescing binaries. , 1996, Physical review. D, Particles and fields.

[39]  Steve McLaughlin,et al.  Comparative study of textural analysis techniques to characterise tissue from intravascular ultrasound , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[40]  B. Owen,et al.  Search templates for gravitational waves from inspiraling binaries: Choice of template spacing. , 1995, Physical review. D, Particles and fields.

[41]  Andrew Calway,et al.  Proceedings of the IEEE International Conference on Image Processing , 1996 .

[42]  T. Apostolatos,et al.  Search templates for gravitational waves from precessing, inspiraling binaries. , 1995, Physical review. D, Particles and fields.

[43]  Sathyaprakash,et al.  Choice of filters for the detection of gravitational waves from coalescing binaries. II. Detection in colored noise. , 1992, Physical review. D, Particles and fields.

[44]  Finn,et al.  Detection, measurement, and gravitational radiation. , 1992, Physical review. D, Particles and fields.

[45]  B. Sathyaprakash,et al.  Choice of filters for the detection of gravitational waves from coalescing binaries. , 1991, Physical review. D, Particles and fields.

[46]  L. Scharf,et al.  Statistical Signal Processing: Detection, Estimation, and Time Series Analysis , 1991 .

[47]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[48]  Echeverría,et al.  Gravitational-wave measurements of the mass and angular momentum of a black hole. , 1989, Physical review. D, Particles and fields.

[49]  W. Israel in 300 Years of Gravitation , 1988 .