Parameter study of synchroniser mechanisms applied to Dual Clutch Transmissions

The modelling, simulation and analysis of a synchroniser mechanism as a component of wet Dual Clutch Transmissions (DCT) is presented in this paper. Mechanism engagement is demonstrated using rigid body models with a detailed drag torque model, to establish its variation over the process. Dimensionless equivalent cone and chamfer torques are used to study the impact of drag torque from a design perspective, and parameter studies performed to verify this method. Outcomes suggest the high dependency of speed synchronisation on both cone angle and friction coefficient, while the chamfer torque are highly dependent on chamfer angle, but not friction coefficient.

[1]  Bernd Bertsche Automotive Transmissions: Fundamentals, Selection, Design and Application , 1999 .

[2]  Eysion A. Liu,et al.  An Improved Hydrodynamic Model for Open Wet Transmission Clutches , 2007 .

[3]  T. A. Harris,et al.  Rolling Bearing Analysis , 1967 .

[4]  H. Schlichting Boundary Layer Theory , 1955 .

[5]  Yi Zhang,et al.  Shift dynamics and control of dual-clutch transmissions , 2007 .

[6]  B. Bertsche,et al.  Rattling and clattering noise in automotive transmissions—Simulation of drag torque and noise , 2003 .

[7]  Nong Zhang,et al.  Friction-induced vibration of clutches in an automatic transmission , 2005 .

[8]  Syed T. Razzacki,et al.  Synchronizer Design and Development for Dual Clutch Transmission (DCT) , 2007 .

[9]  Hong Jiang,et al.  Dynamic Modeling and Simulation of a Dual-Clutch Automated Lay-Shaft Transmission , 2005 .

[10]  Paul D. Walker,et al.  Synchroniser modeling with application specific to the dual clutch transmission , 2009 .

[11]  Hiroaki Hoshino,et al.  Analysis on Synchronization Mechanism of Transmission , 1999 .

[12]  R. Gras,et al.  The hydrodynamic phase of gearbox synchromesh operation: The influence of radial and circumferential grooves , 1997 .

[13]  R. V. Vyrabov Friction in a Cone Clutch and in a Friction Drive With Wedge-Type Bodies , 1991 .

[14]  Manuel Goetz Integrated powertrain control for twin clutch transmissions , 2005 .

[15]  Ching Huan Tseng,et al.  Simulation and analysis of synchronisation and engagement on manual transmission gearbox , 2007 .

[16]  Richard J. Socin,et al.  Manual Transmission Synchronizers , 1968 .

[17]  J Kim,et al.  Simulation of the shift force for a manual transmission , 2003 .

[18]  Graham Johnson,et al.  Gear Windage: A Review , 2008 .

[19]  János Márialigeti,et al.  Mechanical Behaviour Simulation for Synchromesh Mechanism Improvements , 2006 .

[20]  Christophe Changenet,et al.  Windage Losses in High Speed Gears—Preliminary Experimental and Theoretical Results , 2004 .

[21]  K. Srinivasan,et al.  Modeling and Simulation of a Shift Hydraulic System for a Stepped Automatic Transmission , 2003 .

[22]  David,et al.  Determining Power Losses in Helical Gear Mesh: Case Study , 2003 .

[23]  Stuart H. Loewenthal,et al.  Spur-Gear-System Efficiency at Part and Full Load , 1980 .

[24]  D. A. Crolla,et al.  Performance of multicone synchronizers for manual transmissions , 2000 .

[25]  Syed T. Razzacki Synchronizer Design: A Mathematical and Dimensional Treatise , 2004 .

[26]  C. Changenet,et al.  A Model for the Prediction of Churning Losses in Geared Transmissions—Preliminary Results , 2007 .

[27]  John Stringer,et al.  Hydraulic systems analysis: An introduction , 1976 .

[28]  Christophe Changenet,et al.  Power loss predictions in geared transmissions using thermal networks-applications to a six-speed manual gearbox , 2006 .

[29]  David Kelly Christopher Kent Gear Shift Quality Improvement In Manual Transmissions Using Dynamic Modelling , 2000 .