An asynchronous algorithm on the NetSolve global computing system

The explicitly restarted Arnoldi method (ERAM) allows one to find a few eigenpairs of a large sparse matrix. The multiple explicitly restarted Arnoldi method (MERAM) is a technique based upon a multiple projection of ERAM and accelerates its convergence [N. Emamad, S. Petiton, G. Edjlali, Multiple explicitly restarted Arnoldi method for solving large eigenproblems, SIAM J. Sci. Comput. SJSC 27 (1) (2005) 253-277]. MERAM allows one to update the restarting vector of an ERAM by taking into account the interesting eigen-information obtained by its other ERAM processes. This method is particularly well suited to the GRID-type environments. We present an adaptation of the asynchronous version of MERAM for the NetSolve global computing system. We point out some advantages and limitations of this kind of system to implement the asynchronous hybrid algorithms. We give some results of our experiments and show that we can obtain a good acceleration of the convergence compared to ERAM. These results also show the potential of the MERAM-like hybrid methods for the GRID computing environments.

[1]  D. Sorensen IMPLICITLY RESTARTED ARNOLDI/LANCZOS METHODS FOR LARGE SCALE EIGENVALUE CALCULATIONS , 1996 .

[2]  Henri Casanova,et al.  NetSovle: A Network Server for Solving Computational Science Problems , 1996, Proceedings of the 1996 ACM/IEEE Conference on Supercomputing.

[3]  Jack Dongarra,et al.  Applying NetSolve's network-enabled server , 1998 .

[4]  Henri Casanova,et al.  Deploying Fault-Tolerance and Task Migration with NetSolve , 1998, PARA.

[5]  G. Nemer,et al.  Netsolve V Ersion 1.2: Design and Implementation , 1998 .

[6]  H. C Dongarra NetSolve version 1.2: Design and Implementation , 1998 .

[7]  D. Sorensen,et al.  4. The Implicitly Restarted Arnoldi Method , 1998 .

[8]  Jack Dongarra,et al.  A Test Matrix Collection for Non-Hermitian Eigenvalue Problems , 1997 .

[9]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[10]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM Rev..

[11]  Jack Dongarra,et al.  Users' Guide to NetSolve v1.4.1 , 2002 .

[12]  Jack Dongarra,et al.  NetSolve's Network Enabled Server: Examples and Applications , 1999 .

[13]  Serge G. Petiton,et al.  Multiple Explicitly Restarted Arnoldi Method for Solving Large Eigenproblems , 2005, SIAM J. Sci. Comput..

[14]  Henri Casanova,et al.  Netsolve: a Network-Enabled Server for Solving Computational Science Problems , 1997, Int. J. High Perform. Comput. Appl..

[15]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[16]  C. Brezinski,et al.  Hybrid procedures for solving linear systems , 1994 .

[17]  Y. Saad Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices , 1980 .

[18]  David E. Keyes,et al.  Parallel Numerical Algorithms , 1997 .

[19]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[20]  Y. Saad,et al.  Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems , 1984 .

[21]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[22]  Henri Casanova,et al.  Deploying fault tolerance and taks migration with NetSolve , 1999, Future Gener. Comput. Syst..