The Release 6 reference sequence of the Drosophila melanogaster genome

Drosophila melanogaster plays an important role in molecular, genetic, and genomic studies of heredity, development, metabolism, behavior, and human disease. The initial reference genome sequence reported more than a decade ago had a profound impact on progress in Drosophila research, and improving the accuracy and completeness of this sequence continues to be important to further progress. We previously described improvement of the 117-Mb sequence in the euchromatic portion of the genome and 21 Mb in the heterochromatic portion, using a whole-genome shotgun assembly, BAC physical mapping, and clone-based finishing. Here, we report an improved reference sequence of the single-copy and middle-repetitive regions of the genome, produced using cytogenetic mapping to mitotic and polytene chromosomes, clone-based finishing and BAC fingerprint verification, ordering of scaffolds by alignment to cDNA sequences, incorporation of other map and sequence data, and validation by whole-genome optical restriction mapping. These data substantially improve the accuracy and completeness of the reference sequence and the order and orientation of sequence scaffolds into chromosome arm assemblies. Representation of the Y chromosome and other heterochromatic regions is particularly improved. The new 143.9-Mb reference sequence, designated Release 6, effectively exhausts clone-based technologies for mapping and sequencing. Highly repeat-rich regions, including large satellite blocks and functional elements such as the ribosomal RNA genes and the centromeres, are largely inaccessible to current sequencing and assembly methods and remain poorly represented. Further significant improvements will require sequencing technologies that do not depend on molecular cloning and that produce very long reads.

[1]  J. Kennison The Genetic and Cytological Organization of the Y Chromosome of DROSOPHILA MELANOGASTER. , 1981, Genetics.

[2]  S. Whitehead,et al.  A large palindrome with interchromosomal gene duplications in the pericentromeric region of the D. melanogaster Y chromosome. , 2011, Molecular biology and evolution.

[3]  Colin N. Dewey,et al.  Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures , 2007, Nature.

[4]  J. Abad,et al.  Pericentromeric regions containing 1.688 satellite DNA sequences show anti-kinetochore antibody staining in prometaphase chromosomes of Drosophila melanogaster , 2000, Molecular Genetics and Genomics.

[5]  V. Gvozdev,et al.  Structural organization and diversification of Y-linked sequences comprising Su(Ste) genes in Drosophila melanogaster. , 1992, Nucleic acids research.

[6]  Gerald M Rubin,et al.  Heterochromatic sequences in a Drosophila whole-genome shotgun assembly , 2002, Genome Biology.

[7]  R. Wilson,et al.  High throughput fingerprint analysis of large-insert clones. , 1997, Genome research.

[8]  O. Demakova,et al.  The SU(VAR)3-9/HP1 Complex Differentially Regulates the Compaction State and Degree of Underreplication of X Chromosome Pericentric Heterochromatin in Drosophila melanogaster , 2007, Genetics.

[9]  M. Gatti,et al.  Functional elements in Drosophila melanogaster heterochromatin. , 1992, Annual review of genetics.

[10]  K. Kaiser,et al.  Drosophila melanogaster male germ line-specific transcripts with autosomal and Y-linked genes. , 1993, Genetics.

[11]  S. Bonaccorsi,et al.  Genetic analysis of Stellate elements of Drosophila melanogaster. , 1994, Genetics.

[12]  Marco A Marra,et al.  Large‐Scale BAC Clone Restriction Digest Fingerprinting , 2007, Current protocols in human genetics.

[13]  A. Clark,et al.  Y chromosomal fertility factors kl-2 and kl-3 of Drosophila melanogaster encode dynein heavy chain polypeptides. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[15]  Jacob D. Jaffe,et al.  Plasticity in patterns of histone modifications and chromosomal proteins in Drosophila heterochromatin. , 2011, Genome research.

[16]  L. Ptáček,et al.  Mutations in Potassium Channel Kir2.6 Cause Susceptibility to Thyrotoxic Hypokalemic Periodic Paralysis , 2010, Cell.

[17]  Parvaneh Saeedi,et al.  Software for automated analysis of DNA fingerprinting gels. , 2003, Genome research.

[18]  A. B. Carvalho,et al.  Functional Copies of the Mst77F Gene on the Y Chromosome of Drosophila melanogaster , 2010, Genetics.

[19]  Kazutoyo Osoegawa,et al.  Genomic analysis of Drosophila melanogaster telomeres: full-length copies of HeT-A and TART elements at telomeres. , 2004, Molecular biology and evolution.

[20]  Akiko Sakai,et al.  The XNP remodeler targets dynamic chromatin in Drosophila , 2009, Proceedings of the National Academy of Sciences.

[21]  J. Kennison,et al.  Genetic analysis of the brahma gene of Drosophila melanogaster and polytene chromosome subdivisions 72AB. , 1994, Genetics.

[22]  Doree Sitkoff,et al.  models homology modeling : From sequence alignments to structural A comparative study of available software for high-accuracy , 2005 .

[23]  Jim Thurmond,et al.  FlyBase: introduction of the Drosophila melanogaster Release 6 reference genome assembly and large-scale migration of genome annotations , 2014, Nucleic Acids Res..

[24]  E. Lander,et al.  Finishing the euchromatic sequence of the human genome , 2004 .

[25]  E. Frise,et al.  Sequence Finishing and Mapping of Drosophila melanogaster Heterochromatin , 2007, Science.

[26]  M. Accardo,et al.  Fluorescence in situ hybridization with Bacterial Artificial Chromosomes (BACs) to mitotic heterochromatin of Drosophila. , 2010, Methods in molecular biology.

[27]  S. Salzberg,et al.  Versatile and open software for comparing large genomes , 2004, Genome Biology.

[28]  T. Hays,et al.  A fertility region on the Y chromosome of Drosophila melanogaster encodes a dynein microtubule motor. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[29]  G M Rubin,et al.  A BAC-based physical map of the major autosomes of Drosophila melanogaster. , 2000, Science.

[30]  Eugene W. Myers,et al.  A whole-genome assembly of Drosophila. , 2000, Science.

[31]  D. Mccormick Sequence the Human Genome , 1986, Bio/Technology.

[32]  S. Whitehead,et al.  Novel sequencing strategy for repetitive DNA in a Drosophila BAC clone reveals that the centromeric region of the Y chromosome evolved from a telomere , 2009, Nucleic acids research.

[33]  C. Fauron,et al.  Drosophila mitochondrial DNA: a novel gene order. , 1982, Nucleic acids research.

[34]  C. Tyler-Smith,et al.  Dodeca satellite: a conserved G+C-rich satellite from the centromeric heterochromatin of Drosophila melanogaster. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[35]  R. Saunders In situ hybridization to polytene chromosomes. , 2000, Methods in molecular biology.

[36]  Timothy B. Stockwell,et al.  The Sequence of the Human Genome , 2001, Science.

[37]  A. Clark,et al.  Low conservation of gene content in the Drosophila Y chromosome , 2008, Nature.

[38]  J. Bonfield,et al.  Finishing the euchromatic sequence of the human genome , 2004, Nature.

[39]  K. Garcia,et al.  An Extracellular Interactome of Immunoglobulin and LRR Proteins Reveals Receptor-Ligand Networks , 2013, Cell.

[40]  A. Villasanté,et al.  Subtelomeres in Drosophila and Other Diptera , 2014 .

[41]  K. White,et al.  Versatile P(acman) BAC Libraries for Transgenesis Studies in Drosophila melanogaster , 2009, Nature Methods.

[42]  J. Abad,et al.  Centromeres from telomeres? The centromeric region of the Y chromosome of Drosophila melanogaster contains a tandem array of telomeric HeT-A- and TART-related sequences. , 1999, Nucleic acids research.

[43]  Miron Livny,et al.  Validation of rice genome sequence by optical mapping , 2007, BMC Genomics.

[44]  V. Corces,et al.  Gypsy transposition correlates with the production of a retroviral envelope‐like protein under the tissue‐specific control of the Drosophila flamenco gene. , 1994, The EMBO journal.

[45]  J. Abad,et al.  The analysis of Circe, an LTR retrotransposon of Drosophila melanogaster, suggests that an insertion of non-LTR retrotransposons into LTR elements can create chimeric retroelements. , 1999, Molecular biology and evolution.

[46]  E. Myers,et al.  Finishing a whole-genome shotgun: Release 3 of the Drosophila melanogaster euchromatic genome sequence , 2002, Genome Biology.

[47]  B. Graveley The developmental transcriptome of Drosophila melanogaster , 2010, Nature.

[48]  Matthias Zytnicki,et al.  Distribution, evolution, and diversity of retrotransposons at the flamenco locus reflect the regulatory properties of piRNA clusters , 2013, Proceedings of the National Academy of Sciences.

[49]  Gary H Karpen,et al.  Sequence analysis of a functional Drosophila centromere. , 2003, Genome research.

[50]  B. Ephrussi,et al.  A Technique of Transplantation for Drosophila , 1936, The American Naturalist.

[51]  J. Sellers,et al.  Myosins: a diverse superfamily. , 2000, Biochimica et biophysica acta.

[52]  J. Abad,et al.  Genomic and cytological analysis of the Y chromosome of Drosophila melanogaster: telomere-derived sequences at internal regions , 2004, Chromosoma.

[53]  S. Bonaccorsi,et al.  Looking at Drosophila mitotic chromosomes. , 1994, Methods in cell biology.

[54]  L. Koerich,et al.  Two New Y-Linked Genes in Drosophila melanogaster , 2008, Genetics.

[55]  A. Clark,et al.  Identification of five new genes on the Y chromosome of Drosophila melanogaster , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[56]  P. Dimitri,et al.  FISH analysis of Drosophila melanogaster heterochromatin using BACs and P elements , 2003, Chromosoma.

[57]  María Méndez-Lago,et al.  High-resolution analysis of Drosophila heterochromatin organization using SuUR Su(var)3-9 double mutants , 2007, Proceedings of the National Academy of Sciences.

[58]  D. Glover,et al.  Duplicated rDNA sequences of variable lengths flanking the short type I insertions in the rDNA of Drosophila melanogaster. , 1981, Nucleic acids research.

[59]  Marco Marra,et al.  A map for sequence analysis of the Arabidopsis thaliana genome , 1999, Nature Genetics.

[60]  L. Fanti,et al.  A Strategy for Mapping the Heterochromatin of Chromosome 2 of Drosophila Melanogaster , 2003, Genetica.

[61]  J. Abad,et al.  Long-range analysis of the centromeric region of Drosophila melanogaster chromosome 3 , 2000, Chromosome Research.

[62]  Adam P. Rosebrock,et al.  Mapping the pericentric heterochromatin by comparative genomic hybridization analysis and chromosome deletions in Drosophila melanogaster , 2012, Genome research.