Evolution of star formation in the UKIDSS Ultra Deep Survey Field - I. Luminosity functions and cosmic star formation rate out to z = 1.6 (vol 433, pg 796, 2013)

We present new results on the cosmic star formation history in the Subaru/XMM–Newton Deep Survey (SXDS)–Ultra Deep Survey (UDS) field out to z = 1.6. We compile narrowband data from the Subaru Telescope and the Visible and Infrared Survey Telescope for Astronomy (VISTA) in conjunction with broad-band data from the SXDS and UDS, to make a selection of 5725 emission-line galaxies in 12 redshift slices, spanning 10 Gyr of cosmic time. We determine photometric redshifts for the sample using 11-band photometry, and use a spectroscopically confirmed subset to fine tune the resultant redshift distribution. We use the maximum-likelihood technique to determine luminosity functions in each redshift slice and model the selection effects inherent in any narrow-band selection statistically, to obviate the retrospective corrections ordinarily required. The deep narrow-band data are sensitive to very low star formation rates (SFRs), and allow an accurate evaluation of the faint end slope of the Schechter function, α. We find that α is particularly sensitive to the assumed faintest broad-band magnitude of a galaxy capable of hosting an emission line, and propose that this limit should be empirically motivated. For this analysis, we base our threshold on the limiting observed equivalent widths of emission lines in the local Universe. We compute the characteristic SFR of galaxies in each redshift slice, and the integrated SFR density, ρSFR. We find our results to be in good agreement with the literature and parametrize the evolution of the SFR density as ρSFR ∝ (1 + z)4.58 confirming a steep decline in star formation activity since z ∼ 1.6. Key words: surveys – galaxies: evolution – galaxies: formation – galaxies: high-redshift – galaxies: star formation – cosmology: observations.

[1]  M. Sullivan,et al.  The VISTA deep extragalactic observations (VIDEO) survey , 2012, 1206.4263.

[2]  Michele Cirasuolo,et al.  A large Hα survey at z = 2.23, 1.47, 0.84 and 0.40: the 11 Gyr evolution of star-forming galaxies from HiZELS , 2012, 1202.3436.

[3]  T. Nagao,et al.  THE STELLAR POPULATION AND STAR FORMATION RATES OF z ≈ 1.5–1.6 [O ii]-EMITTING GALAXIES SELECTED FROM NARROWBAND EMISSION-LINE SURVEYS , 2012, 1206.4303.

[4]  J. Dunlop,et al.  Radio imaging of the Subaru/XMM–NewtonDeep Field– III. Evolution of the radio luminosity function beyond z= 1 , 2012, 1201.3225.

[5]  McGill,et al.  Star formation at z=1.47 from HiZELS: an Hα+[O ii] double-blind study* , 2011, 1109.1830.

[6]  Subaru Telescope,et al.  Cosmic Star-Formation Activity at z = 2.2 Probed by H α Emission-Line Galaxies , 2010, 1012.4860.

[7]  S. Roca-F brega,et al.  Revista Mexicana de Astronomia y Astrofisica Conference Series , 2011 .

[8]  C. Conselice,et al.  Galaxy properties in different environments up to z∼ 3 in the GOODS NICMOS Survey , 2010, 1011.4846.

[9]  I. Smail,et al.  The dependence of star formation activity on environment and stellar mass at z∼ 1 from the HiZELS-Hα survey , 2010, 1007.2642.

[10]  P. McCarthy,et al.  The Redshift One LDSS-3 Emission line Survey (ROLES): survey method and z∼ 1 mass-dependent star formation rate density , 2010, 1002.3170.

[11]  D. Schaerer,et al.  The H-alpha luminosity function at redshift 2.2 - A new determination using VLT/HAWK-I , 2009, 0912.3267.

[12]  R. Davies,et al.  Astronomical Society of the Pacific Conference Series , 2010 .

[13]  F. Lamareille Spectral classification of emission-line galaxies from the Sloan Digital Sky Survey. I. An improved classification for high redshift galaxies , 2009, 0910.4814.

[14]  S. M. Fall,et al.  LARGE AREA SURVEY FOR z = 7 GALAXIES IN SDF AND GOODS-N: IMPLICATIONS FOR GALAXY FORMATION AND COSMIC REIONIZATION , 2009, 0908.3191.

[15]  I. Baldry,et al.  Evolution of the u-band luminosity function from redshift 1.2 to 0 , 2009, 0904.0349.

[16]  Oxford,et al.  HiZELS:a high-redshift survey of Hα emitters - II. the nature of star-forming galaxies at z = 0.84 , 2009, 0901.4114.

[17]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[18]  R. J. Ivison,et al.  HiZELS: a high-redshift survey of Hα emitters – I. The cosmic star formation rate and clustering at z= 2.23 , 2008, 0805.2861.

[19]  S. Okamura,et al.  The Subaru/XMM-Newton Deep Survey (SXDS). II. Optical Imaging and Photometric Catalogs , 2008, 0801.4017.

[20]  S. Okamura,et al.  The Subaru/XMM-Newton Deep Survey (SXDS). IV. Evolution of Lyα Emitters from z = 3.1 to 5.7 in the 1 deg2 Field: Luminosity Functions and AGN , 2007, 0707.3161.

[21]  V. Villar,et al.  The Hα-based Star Formation Rate Density of the Universe at z = 0.84 , 2007, 0712.4150.

[22]  L. Guzzo,et al.  The Hα Luminosity Function and Star Formation Rate at z ≈ 0.24 in the COSMOS 2 Square Degree Field , 2007, 0709.1009.

[23]  E. Sadler,et al.  Radio sources in the 6dFGS: local luminosity functions at 1.4 GHz for star-forming galaxies and radio-loud AGN , 2006, astro-ph/0612018.

[24]  C. Conselice,et al.  Number counts and clustering properties of bright distant red galaxies in the UKIDSS Ultra Deep Survey Early Data Release , 2006, astro-ph/0606386.

[25]  M. Irwin,et al.  The UKIRT Infrared Deep Sky Survey (UKIDSS) , 2006, astro-ph/0604426.

[26]  Paul Clark,et al.  The VISTA infrared camera , 2006, SPIE Astronomical Telescopes + Instrumentation.

[27]  T. Nagao,et al.  The Luminosity Function and Star Formation Rate between Redshifts of 0.07 and 1.47 for Narrowband Emitters in the Subaru Deep Field , 2006, astro-ph/0610846.

[28]  A. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[29]  Tucson,et al.  Infrared Luminosity Functions from the Chandra Deep Field-South: The Spitzer View on the History of Dusty Star Formation at 0 ≲ z ≲ 1* , 2005, astro-ph/0506462.

[30]  Christopher D. Martin,et al.  Spitzer View on the Evolution of Star-forming Galaxies from z = 0 to z ~ 3 , 2005, astro-ph/0505101.

[31]  H. Spinrad,et al.  The Hubble Space Telescope ACS Grism Parallel Survey. II. First Results and a Catalog of Faint Emission-Line Galaxies at z ≤ 1.6 , 2005, astro-ph/0503592.

[32]  R. Nichol,et al.  The Sloan Digital Sky Survey u‐band Galaxy Survey: luminosity functions and evolution , 2005, astro-ph/0501110.

[33]  M. Langlois,et al.  Society of Photo-Optical Instrumentation Engineers , 2005 .

[34]  A. Cimatti,et al.  A New Photometric Technique for the Joint Selection of Star-forming and Passive Galaxies at 1.4 ≲ z ≲ 2.5 , 2004, astro-ph/0409041.

[35]  I. Smail,et al.  A panoramic Hα imaging survey of the z= 0.4 cluster Cl 0024.0+1652 with Subaru , 2004, astro-ph/0408037.

[36]  Cambridge,et al.  The star formation rate of the Universe at z~ 6 from the Hubble Ultra-Deep Field , 2004, astro-ph/0403223.

[37]  L. Moustakas,et al.  Cosmic Variance in the Great Observatories Origins Deep Survey , 2003, astro-ph/0309071.

[38]  S. Okamura,et al.  The Hα Luminosity Function of the Galaxy Cluster A521 at z = 0.25 , 2003, astro-ph/0310212.

[39]  S. Okamura,et al.  Subaru Deep Survey. VI. A Census of Lyman Break Galaxies at z ≃ 4 and 5 in the Subaru Deep Fields: Clustering Properties , 2003, astro-ph/0309657.

[40]  K. Glazebrook,et al.  Constraints on a Universal Stellar Initial Mass Function from Ultraviolet to Near-Infrared Galaxy Luminosity Densities , 2003 .

[41]  K. Glazebrook,et al.  Constraints on a Universal IMF from UV to Near-IR Galaxy Luminosity Densities , 2003, astro-ph/0304423.

[42]  J. Rhodes,et al.  Emission-Line Galaxies in the Space Telescope Imaging Spectrograph Parallel Survey. I. Observations and Data Analysis , 2002, astro-ph/0212576.

[43]  P. McCarthy,et al.  Star Formation in Emission-Line Galaxies between Redshifts of 0.8 and 1.6 , 2002, astro-ph/0208551.

[44]  D. Burke,et al.  STAR FORMATION HISTORY SINCE z = 1.5 AS INFERRED FROM REST-FRAME ULTRAVIOLET LUMINOSITY DENSITY EVOLUTION , 2002, astro-ph/0203168.

[45]  S. Maddox,et al.  The Hα luminosity function and star formation rate up to z ∼ 1 ⋆ , 2001, astro-ph/0111390.

[46]  Lennox L. Cowie,et al.  Evidence for a Gradual Decline in the Universal Rest-Frame Ultraviolet Luminosity Density for z < 1 , 1999, astro-ph/9904345.

[47]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[48]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[49]  D. Hogg,et al.  The O II Luminosity Density of the Universe , 1998, astro-ph/9804129.

[50]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[51]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[52]  O. Fèvre,et al.  The Canada-France Redshift Survey: The Luminosity Density and Star Formation History of the Universe to z ~ 1 , 1996, astro-ph/9601050.

[53]  A. Aragón-Salamanca,et al.  The Current Star Formation Rate of the Local Universe , 1995, astro-ph/9510061.

[54]  P. Hewett,et al.  On near-infrared Hα searches for high-redshift galaxies⋆ , 1995, astro-ph/9501026.

[55]  Robert C. Kennicutt,et al.  The Integrated spectra of nearby galaxies: General properties and emission line spectra , 1992 .

[56]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[57]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[58]  G. Zamorani,et al.  Analysis of complete quasar samples to obtain parameters of luminosity and evolution functions , 1983 .

[59]  P. Schechter An analytic expression for the luminosity function for galaxies , 1976 .