Bootstrap approximation for the exchange-correlation kernel of time-dependent density-functional theory.

A new parameter-free approximation for the exchange-correlation kernel f(xc) of time-dependent density-functional theory is proposed. This kernel is expressed as an algorithm in which the exact Dyson equation for the response, as well as an approximate expression for f(xc) in terms of the dielectric function, are solved together self-consistently, leading to a simple parameter-free kernel. We apply this to the calculation of optical spectra for various small band gap (Ge, Si, GaAs, AlN, TiO(2), SiC), large band gap (C, LiF, Ar, Ne), and magnetic (NiO) insulators. The calculated spectra are in very good agreement with the experiment for this diverse set of materials, highlighting the universal applicability of the new kernel.

[1]  M. Petersilka,et al.  DENSITY FUNCTIONAL THEORY OF TIME-DEPENDENT PHENOMENA , 1996 .

[2]  M. Hybertsen,et al.  Quasiparticle and optical properties of rutile and anatase TiO 2 , 2010, 1006.4085.

[3]  J. J. Rehr,et al.  Optical to UV spectra and birefringence of SiO2 and TiO2: First-principles calculations with excitonic effects , 2008, 0807.1920.

[4]  V. Turkowski,et al.  Time-dependent density-functional approach for exciton binding energies , 2009, 0903.0027.

[5]  C. Rödl Elektronische und exzitonische Anregungen in magnetischen Isolatoren , 2010 .

[6]  L. Reining,et al.  Parameter-free calculation of response functions in time-dependent density-functional theory. , 2003, Physical review letters.

[7]  R. Laskowski,et al.  Optical properties of AlN and GaN under pressure: An ab‐initio study , 2007 .

[8]  R. W. Godby,et al.  Long-wavelength behavior of the exchange-correlation kernel in the Kohn-Sham theory of periodic systems , 1997 .

[9]  L. Reining,et al.  Energy dependence of the exchange-correlation kernel of time-dependent density functional theory: A simple model for solids , 2005 .

[10]  O. Ambacher,et al.  Polytype control and properties of AlN on silicon , 2005 .

[11]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[12]  F. Bechstedt,et al.  Quasiparticle and excitonic effects in the optical spectra of diamond, SiC, Si, GaP, GaAs, InP, and AlN , 2005 .

[13]  A. A. Studna,et al.  Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV , 1983 .

[14]  Andrea Marini,et al.  yambo: An ab initio tool for excited state calculations , 2008, Comput. Phys. Commun..

[15]  L. Reining,et al.  Time-dependent density-functional theory for extended systems , 2007 .

[16]  David J. Singh Planewaves, Pseudopotentials, and the LAPW Method , 1993 .

[17]  L. Reining,et al.  Electronic excitations: density-functional versus many-body Green's-function approaches , 2002 .

[18]  Lucia Reining,et al.  Efficient ab initio calculations of bound and continuum excitons in the absorption spectra of semico , 2007, 0705.3140.

[19]  F. Bechstedt,et al.  Optical functions of semiconductors beyond density-functional theory and random-phase approximation , 1997 .

[20]  Steven G. Louie,et al.  Electron-Hole Excitations in Semiconductors and Insulators , 1998 .

[21]  Angel Rubio,et al.  Bound excitons in time-dependent density-functional theory: optical and energy-loss spectra. , 2003, Physical review letters.

[22]  Ab initio many-body calculation of excitons in solid Ne and Ar , 2004, cond-mat/0412584.

[23]  N. Vast,et al.  Long-range contribution to the exchange-correlation kernel of time-dependent density functional theory , 2004 .

[24]  S. Logothetidis,et al.  Dielectric function and reflectivity of 3C–silicon carbide and the component perpendicular to the c axis of 6H–silicon carbide in the energy region 1.5–9.5 eV , 1996 .

[25]  Optical properties of single-crystal anatase TiO2 , 1997 .

[26]  R. J. Powell,et al.  Optical Properties of NiO and CoO , 1970 .

[27]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[28]  Andreoni,et al.  Ab initio calculations of the quasiparticle and absorption spectra of clusters: The sodium tetramer. , 1995, Physical review letters.

[29]  L. Benedict,et al.  Theory of optical absorption in diamond, Si, Ge, and GaAs , 1998 .

[30]  M. Cardona,et al.  Interband critical points of GaAs and their temperature dependence. , 1987, Physical review. B, Condensed matter.

[31]  M. Klein,et al.  Rare gas solids , 1976 .

[32]  Stefan Albrecht Lucia Reining Rodolfo Del Sole Giovanni Onida Ab Initio Calculation of Excitonic Effects in the Optical Spectra of Semiconductors , 1998 .

[33]  F. Bechstedt,et al.  Quasiparticle bands and optical spectra of highly ionic crystals: AlN and NaCl , 2005 .

[34]  E. Gross,et al.  Density-Functional Theory for Time-Dependent Systems , 1984 .

[35]  Cardona,et al.  Temperature dependence of the dielectric function and interband critical points in silicon. , 1987, Physical review. B, Condensed matter.

[36]  W. C. Walker,et al.  Optical Constants of Magnesium Oxide and Lithium Fluoride in the Far Ultraviolet , 1967 .

[37]  Angel Rubio,et al.  Excitonic effects in solids described by time-dependent density-functional theory. , 2002, Physical review letters.