Arrays of microlenses with variable focal lengths fabricated by restructuring polymer surfaces with an ink-jet device.

We report of a method for fabricating two-dimensional, regular arrays of polymer microlenses with focal lengths variable between 0.2 and 4.5 mm. We first make concave microlenses by ink-jetting solvent on a polymer substrate with a commercial drop-on-demand device. Solvent evaporation restructures the surface by a series of combined effects, which are discussed. In the second step we obtain convex elastomeric microlenses by casting the template made in the first step. We demonstrate the good optical quality of the microlenses by characterising their surfaces with atomic force microscopy and white light interferometry, and by directly measuring their focal lengths with ad-hoc confocal laser scanning microscopy.

[1]  R Goering,et al.  Colorless gradient-index cylindrical lenses with high numerical apertures produced by silver-ion exchange. , 1995, Applied optics.

[2]  S. Baluschev,et al.  Microstructures on soluble polymer surfaces via drop deposition of solvent mixtures , 2006 .

[3]  Ulrich S. Schubert,et al.  Polymer‐Relief Microstructures by Inkjet Etching , 2006 .

[4]  Hans-Jürgen Butt,et al.  Fabrication of microvessels and microlenses from polymers by solvent droplets , 2005 .

[5]  J N McMullin,et al.  Single-step fabrication of refractive microlens arrays. , 1997, Applied optics.

[6]  Michel A. Aegerter,et al.  Deposition of micropatterned coating using an ink-jet technique , 1999 .

[7]  S. Yang,et al.  Tunable and Latchable Liquid Microlens with Photopolymerizable Components , 2003 .

[8]  Byeong-Soo Bae,et al.  Direct photofabrication of focal-length-controlled microlens array using photoinduced migration mechanisms of photosensitive sol-gel hybrid materials. , 2006, Optics express.

[9]  W. Wiechert,et al.  Modelling and simulation of micro-well formation , 2006 .

[10]  Richard H. Friend,et al.  Inkjet Printed Via‐Hole Interconnections and Resistors for All‐Polymer Transistor Circuits , 2001 .

[11]  George M. Whitesides,et al.  Fabrication of Arrays of Microlenses with Controlled Profiles Using Gray-Scale Microlens Projection Photolithography , 2002 .

[12]  Juergen Mohr,et al.  Fabrication and characterization of microlenses realized by a modified LIGA process , 1997 .

[13]  伊賀 健一,et al.  Fundamentals of microoptics : distributed-index, microlens, and stacked planar optics , 1984 .

[14]  Masatsugu Shimomura,et al.  Simple fabrication of micro lens arrays. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[15]  Hans Peter Herzig,et al.  Comparing glass and plastic refractive microlenses fabricated with different technologies , 2006 .

[16]  U. Schubert,et al.  Inkjet Printing of Polymers: State of the Art and Future Developments , 2004 .

[17]  Nagel,et al.  Contact line deposits in an evaporating drop , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  Erdan Gu,et al.  Reflection/transmission confocal microscopy characterization of single-crystal diamond microlens arrays , 2004 .

[19]  U. Schubert,et al.  Polymer‐Relief Microstructures by Inkjet Etching , 2006 .

[20]  Michael F. Land,et al.  Microlens arrays in the animal kingdom , 1997 .

[21]  Chih-Yuan Chang,et al.  A novel method for rapid fabrication of microlens arrays using micro-transfer molding with soft mold , 2006 .

[22]  T. Dupont,et al.  Capillary flow as the cause of ring stains from dried liquid drops , 1997, Nature.

[23]  G. Yi,et al.  Close-packed hemispherical microlens array from two-dimensional ordered polymeric microspheres. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[24]  Chih-Yuan Chang,et al.  Fabrication of polymer microlens arrays using capillary forming with a soft mold of micro-holes array and UV-curable polymer. , 2006, Optics express.