Relaxing the universal quantifier of the division in fuzzy relational databases

In a previous paper, we presented an approach to calculate relational division in fuzzy databases, starting with the GEFRED model. This work centered on dealing with fuzzy attributes and fuzzy values and only the universal quantifier was taken into account since it is the inherent quantifier in classical relational division. In this paper, we present an extension of that division to relax the universal quantifier. With this new system we can use both absolute quantifiers and relative quantifiers irrespective of how the function of the fuzzy quantifier is defined. We also include a comparison with other fuzzy division approaches to relax the universal quantifier that have been published. Furthermore, in this paper we have extended the fuzzy SQL language to express any kind of fuzzy division. © 2001 John Wiley & Sons, Inc.

[1]  Daniel Sánchez,et al.  A survey of methods for evaluating quantified sentences , 1999, EUSFLAT-ESTYLF Joint Conf..

[2]  Michinori Nakata Formulation of Division Operators in Fuzzy Relational Databases , 2000 .

[3]  Noureddine Mouaddib,et al.  Fuzzy identification in fuzzy databases-the nuanced relational division , 1993, 1993 (2nd) International Symposium on Uncertainty Modeling and Analysis.

[4]  B. Buckles,et al.  A fuzzy representation of data for relational databases , 1982 .

[5]  Henri Prade,et al.  Fuzzy relational databases: Representational issues and reduction using similarity measures , 1987 .

[6]  Didier Dubois,et al.  Semantics of quotient operators in fuzzy relational databases , 1996, Fuzzy Sets Syst..

[7]  M. Vila,et al.  Using OWA operator in flexible query processing , 1997 .

[8]  Didier Dubois,et al.  Extended Divisions for Flexible Queries in Relational Databases , 2000 .

[9]  D. S. Fernández Adquisición de relaciones entre atributos en bases de datos relacionales , 2000 .

[10]  José Galindo,et al.  Querying fuzzy relational databases through fuzzy domain calculus , 1999 .

[11]  José Galindo,et al.  Clustering and Fuzzy Classification in a Financial Data Mining Environment , 1999, IIA/SOCO.

[12]  Bernadette Bouchon-Meunier,et al.  Fuzzy Logic And Soft Computing , 1995 .

[13]  Olga Pons,et al.  A Server for Fuzzy SQL Queries , 1998, FQAS.

[14]  Lotfi A. Zadeh,et al.  A COMPUTATIONAL APPROACH TO FUZZY QUANTIFIERS IN NATURAL LANGUAGES , 1983 .

[15]  M. Gupta,et al.  FUZZY INFORMATION AND DECISION PROCESSES , 1981 .

[16]  Da Ruan,et al.  Foundations and Applications of Possibility Theory , 1995 .

[17]  Patrick Bosc,et al.  Fuzzy databases : principles and applications , 1996 .

[18]  M. Carmen Garrido,et al.  Fuzzy division in fuzzy relational databases: an approach , 2001, Fuzzy Sets Syst..

[19]  Olga Pons,et al.  THE GENERALIZED SELECTION: AN ALTERNATIVE WAY FOR THE QUOTIENT OPERATIONS IN FUZZY RELATIONAL DATABASES , 1995 .

[20]  Olga Pons,et al.  GEFRED: A Generalized Model of Fuzzy Relational Databases , 1994, Inf. Sci..

[21]  Frederick E. Petry,et al.  Extending the fuzzy database with fuzzy numbers , 1984, Inf. Sci..

[22]  E. F. Codd,et al.  Relational Completeness of Data Base Sublanguages , 1972, Research Report / RJ / IBM / San Jose, California.

[23]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[24]  Olga Pons,et al.  Knowledge Management in Fuzzy Databases , 2000 .

[25]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[26]  Didier Dubois,et al.  Flexible Queries in Relational Databases - The Example of the Division Operator , 1997, Theor. Comput. Sci..