Cut Finite Element Methods for Linear Elasticity Problems

We formulate a cut finite element method for linear elasticity based on higher order elements on a fixed background mesh. Key to the method is a stabilization term which provides control of the jumps in the derivatives of the finite element functions across faces in the vicinity of the boundary. We then develop the basic theoretical results including error estimates and estimates of the condition number of the mass and stiffness matrices. We apply the method to the standard displacement problem, the frequency response problem, and the eigenvalue problem. We present several numerical examples including studies of thin bending dominated structures relevant for engineering applications. Finally, we develop a cut finite element method for fibre reinforced materials where the fibres are modeled as a superposition of a truss and a Euler-Bernoulli beam. The beam model leads to a fourth order problem which we discretize using the restriction of the bulk finite element space to the fibre together with a continuous/discontinuous finite element formulation. Here the bulk material stabilizes the problem and it is not necessary to add additional stabilization terms.

[1]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[3]  Peter Hansbo,et al.  Continuous/discontinuous finite element modelling of Kirchhoff plate structures in $$\mathbb {R}^3$$R3 using tangential differential calculus , 2017 .

[4]  Peter Hansbo,et al.  Variational formulation of curved beams in global coordinates , 2013, 1305.1501.

[5]  Dominik Schillinger,et al.  The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models , 2015 .

[6]  Y. Bazilevs,et al.  Weakly enforced essential boundary conditions for NURBS‐embedded and trimmed NURBS geometries on the basis of the finite cell method , 2013 .

[7]  Arnold Reusken,et al.  A Higher Order Finite Element Method for Partial Differential Equations on Surfaces , 2016, SIAM J. Numer. Anal..

[8]  F. de Prenter,et al.  Condition number analysis and preconditioning of the finite cell method , 2016, 1601.05129.

[9]  A. Reusken,et al.  On surface meshes induced by level set functions , 2012, Comput. Vis. Sci..

[10]  Peter Hansbo,et al.  Cut finite element modeling of linear membranes , 2015, 1511.02327.

[11]  Ernst Rank,et al.  Finite cell method , 2007 .

[12]  A. H. Schatz,et al.  An observation concerning Ritz-Galerkin methods with indefinite bilinear forms , 1974 .

[13]  Peter Hansbo,et al.  Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method , 2010 .

[14]  Jean-Luc Guermond,et al.  Evaluation of the condition number in linear systems arising in finite element approximations , 2006 .

[15]  T. Fries,et al.  Higher‐order accurate integration of implicit geometries , 2016 .

[16]  Samir Omerovic,et al.  Higher-order meshing of implicit geometries - part I: Integration and interpolation in cut elements , 2017, ArXiv.

[17]  Jinchao Xu,et al.  A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..

[18]  P. Hansbo,et al.  Fictitious domain finite element methods using cut elements , 2012 .

[19]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[20]  P. Hansbo,et al.  A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity , 2009 .

[21]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[22]  G S.,et al.  A trace finite element method for a class of coupled bulk-interface transport problems , 2014 .

[23]  Mats G. Larson,et al.  The Finite Element , 2013 .

[24]  T. Hughes,et al.  Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity , 2002 .

[25]  Mats G. Larson,et al.  A Posteriori and a Priori Error Analysis for Finite Element Approximations of Self-Adjoint Elliptic Eigenvalue Problems , 2000, SIAM J. Numer. Anal..

[26]  Peter Hansbo,et al.  CutFEM: Discretizing geometry and partial differential equations , 2015 .

[27]  P. Hansbo,et al.  A FINITE ELEMENT METHOD ON COMPOSITE GRIDS BASED ON NITSCHE'S METHOD , 2003 .

[28]  André Massing,et al.  A Stabilized Nitsche Fictitious Domain Method for the Stokes Problem , 2012, J. Sci. Comput..

[29]  Harry Yserentant,et al.  A Short Theory of the Rayleigh–Ritz Method , 2013, Comput. Methods Appl. Math..

[30]  Maxim A. Olshanskii,et al.  A Finite Element Method for Elliptic Equations on Surfaces , 2009, SIAM J. Numer. Anal..