Mixed valent sites in biological electron transfer.

Many of the active sites involved in electron transfer (ET) in biology have more than one metal and are mixed valent in at least one redox state. These include Cu(A), and the polynuclear Fe-S clusters which vary in their extent of delocalization. In this tutorial review the relative contributions to delocalization are evaluated using S K-edge X-ray absorption, magnetic circular dichroism and other spectroscopic methods. The role of intra-site delocalization in ET is considered.

[1]  Geneviève Blondin,et al.  Interplay of electron exchange and electron transfer in metal polynuclear complexes in proteins or chemical models , 1990 .

[2]  R. Marcus,et al.  Electron transfers in chemistry and biology , 1985 .

[3]  D. Dooley,et al.  1H NMR studies on the CuA center of nitrous oxide reductase from Pseudomonas stutzeri. , 1999, Biochemistry.

[4]  K. Wieghardt,et al.  The novel mixed-valence, exchange-coupled, class III dimer [L2Fe2(µ-OH)3]2+(L =N,N′,N″-trimethyl-1,4,7-triazacyclononane) , 1989 .

[5]  Edward I. Solomon,et al.  Structural and Functional Aspects of Metal Sites in Biology. , 1996, Chemical reviews.

[6]  L. Bubacco,et al.  Understanding the electronic properties of the CuA site from the soluble domain of cytochrome c oxidase through paramagnetic 1H NMR. , 1998, Biochemistry.

[7]  J. Onuchic,et al.  Theory and Practice of Electron Transfer within Proteinminus signProtein Complexes: Application to the Multidomain Binding of Cytochrome c by Cytochrome c Peroxidase. , 1996, Chemical reviews.

[8]  Hartmut Michel,et al.  Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans , 1995, Nature.

[9]  Robert Fraczkiewicz,et al.  Identification and Description of Copper-Thiolate Vibrations in the Dinuclear CuA Site of Cytochrome c Oxidase , 1996 .

[10]  H. Gray,et al.  The Cu_A Center of a Soluble Domain from Thermus Cytochrome ba_3. An NMR Investigation of the Paramagnetic Protein , 1996 .

[11]  C. A. James,et al.  Far-red resonance Raman study of copper A in subunit II of cytochrome c oxidase. , 1996 .

[12]  K. Hodgson,et al.  Ligand K-edge X-ray absorption spectroscopy and DFT calculations on [Fe3S4]0,+ clusters: delocalization, redox, and effect of the protein environment. , 2004, Journal of the American Chemical Society.

[13]  Elmars Krausz,et al.  Vibronic coupling model for calculation of mixed valence absorption profiles , 1978 .

[14]  E. Solomon,et al.  Spectroscopic methods in bioinorganic chemistry: blue to green to red copper sites. , 2006, Inorganic chemistry.

[15]  M. Newton,et al.  Quantum chemical probes of electron-transfer kinetics: the nature of donor-acceptor interactions , 1991 .

[16]  K. Hodgson,et al.  Ligand K-edge X-ray absorption spectroscopy of [Fe4S4]1+,2+,3+ clusters: changes in bonding and electronic relaxation upon redox. , 2004, Journal of the American Chemical Society.

[17]  H. Beinert,et al.  Iron-sulfur clusters: nature's modular, multipurpose structures. , 1997, Science.

[18]  R. Cammack,et al.  Antiferromagnetic exchange interaction in the two-iron-two-sulphur ferredoxin from the blue-green alga Spirulina maxima studied with a highly sensitive magnetic balance. , 1980, Biochimica et biophysica acta.

[19]  J. Ibers,et al.  Synthetic analogs of the active sites of iron-sulfur proteins. II. Synthesis and structure of the tetra(mercapto-m 3 -sulfido-iron) clusters, (Fe 4 S 4 (SR) 4 ) 2- . , 1973, Journal of the American Chemical Society.

[20]  Edward I. Solomon,et al.  Solvent Tuning of Electrochemical Potentials in the Active Sites of HiPIP Versus Ferredoxin , 2007, Science.

[21]  Yi Lu,et al.  Spectroscopy of Mixed-Valence CuA-Type Centers: Ligand-Field Control of Ground-State Properties Related to Electron Transfer , 1998 .

[22]  William B. Tolman,et al.  A thiolate-bridged, fully delocalized mixed-valence dicopper(I,II) complex that models the CuA biological electron-transfer site , 1996 .

[23]  J. Reynolds,et al.  Core chalcogenide atom substitution reactions of [Fe2X2(SR)4]2- and [Fe4X4(SR)4]2-,3- clusters (X = sulfur, selenium) , 1981 .

[24]  István Mayer,et al.  Charge, bond order and valence in the AB initio SCF theory , 1983 .

[25]  Edward I. Solomon,et al.  Excited-State Contributions to Ground-State Properties of Mixed-Valence Dimers: Spectral and Electronic-Structural Studies of [Fe2(OH)3(tmtacn)2]2+ Related to the [Fe2S2]+ Active Sites of Plant-Type Ferredoxins , 1996 .

[26]  Frank Neese,et al.  MCD C-Term Signs, Saturation Behavior, and Determination of Band Polarizations in Randomly Oriented Systems with Spin S >/= (1)/(2). Applications to S = (1)/(2) and S = (5)/(2). , 1999, Inorganic chemistry.

[27]  Roald Hoffmann,et al.  Orbital interactions in metal dimer complexes , 1975 .

[28]  K. Hodgson,et al.  Protein effects on the electronic structure of the [Fe4S4]2+ cluster in ferredoxin and HiPIP. , 2001, Journal of the American Chemical Society.

[29]  K. R. Williams,et al.  Influence of Copper−Sulfur Covalency and Copper−Copper Bonding on Valence Delocalization and Electron Transfer in the CuA Site of Cytochrome c Oxidase‖ , 1997 .

[30]  P. Kroneck,et al.  The cupric site in nitrous oxide reductase contains a mixed‐valence [Cu(II),Cu(I)] binuclear center: A multifrequency electron paramagnetic resonance investigation , 1988, FEBS letters.

[31]  K. Hodgson,et al.  Investigation of the Electronic Structure of 2Fe−2S Model Complexes and the Rieske Protein Using Ligand K-Edge X-ray Absorption Spectroscopy , 1999 .

[32]  Arieh Warshel,et al.  Protein Control of Redox Potentials of Iron−Sulfur Proteins , 1996 .

[33]  E. Heller,et al.  Time‐dependent theory of Raman scattering , 1979 .

[34]  J. Kraut,et al.  A comparison of Fe 4 S 4 clusters in high-potential iron protein and in ferredoxin. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[35]  K. Hodgson,et al.  A quantitative description of the ground-state wave function of Cu(A) by X-ray absorption spectroscopy: comparison to plastocyanin and relevance to electron transfer. , 2001, Journal of the American Chemical Society.

[36]  L. Que,et al.  Synthetic analogs of the active sites of iron-sulfur proteins. VI. Spectral and redox characteristics of the tetranuclear clusters (Fe4S4(SR)4).2-. , 1974, Journal of the American Chemical Society.

[37]  T. Tomizaki,et al.  Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A , 1995, Science.

[38]  K. Wieghardt,et al.  Excited-State Distortions and Electron Delocalization in Mixed-Valence Dimers: Vibronic Analysis of the Near-IR Absorption and Resonance Raman Profiles of [Fe(2)(OH)(3)(tmtacn)(2)](2+). , 1996, Inorganic chemistry.

[39]  Richard H. Holm,et al.  Synthetic analogues of the active sites of iron-sulfur proteins. , 2004 .

[40]  Evert Jan Baerends,et al.  Electronic structure, magnetic properties, ESR, and optical spectra for 2-iron ferredoxin models by LCAO-X.alpha. valence bond theory , 1984 .

[41]  Yi Lu,et al.  pH-dependent transition between delocalized and trapped valence states of a CuA center and its possible role in proton-coupled electron transfer. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[42]  K. Hodgson,et al.  S K-edge X-ray absorption studies of tetranuclear iron-sulfur clusters: mu-sulfide bonding and its contribution to electron delocalization. , 2001, Journal of the American Chemical Society.

[43]  S. I. Gorelsky,et al.  The two-state issue in the mixed-valence binuclear CuA center in cytochrome C oxidase and N2O reductase. , 2006, Journal of the American Chemical Society.

[44]  Robert K Szilagyi,et al.  Electronic structures of metal sites in proteins and models: contributions to function in blue copper proteins. , 2004, Chemical reviews.

[45]  Peter Day,et al.  Mixed Valence Chemistry-A Survey and Classification , 1968 .

[46]  W. D. Phillips,et al.  Synthetic analogs of the active sites of iron-sulfur proteins. Structure and properties of bis(o-xylyldithiolato-m2-sulfidoferrate (3)), an analog of the 2Fe-2S proteins. , 1973, Proceedings of the National Academy of Sciences of the United States of America.