Shannon number and degrees of freedom of an image
暂无分享,去创建一个
[1] G. D. Francia. Resolving Power and Information , 1955 .
[2] K. Miyamoto. On Gabor’s Expansion Theorem* , 1960 .
[3] D. Slepian,et al. Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .
[4] H. Pollak,et al. Prolate spheroidal wave functions, fourier analysis and uncertainty — III: The dimension of the space of essentially time- and band-limited signals , 1962 .
[5] D. Slepian. Prolate spheroidal wave functions, Fourier analysis and uncertainty — IV: Extensions to many dimensions; generalized prolate spheroidal functions , 1964 .
[6] D. Slepian,et al. Eigenvalues associated with prolate spheroidal wave functions of zero order , 1965 .
[7] C. W. Barnes. Object Restoration in a Diffraction-Limited Imaging System , 1966 .
[8] H. Landau. Necessary density conditions for sampling and interpolation of certain entire functions , 1967 .
[9] A. Walther. Gabor’s Theorem and Energy Transfer through Lenses , 1967 .
[10] C. K. Rushforth,et al. Restoration, Resolution, and Noise , 1968 .
[11] G. D. Francia. Degrees of Freedom of Image , 1969 .
[12] J. T. Winthrop. Structural-information storage in holograms , 1970 .
[13] J. Winthrop,et al. Propagation of Structural Information in Optical Wave Fields , 1971 .