Titanium oxide electron-selective layers for contact passivation of thin-film crystalline silicon solar cells

In crystalline silicon (c-Si) solar cells, carrier selective contacts are among the remaining issues to be addressed in order to reach the theoretical efficiency limit. Especially in ultra-thin-film c-Si solar cells with small volumes and higher carrier concentrations, contact recombination is more critical to the overall performance. In this paper, the advantages of using TiOX as electron-selective layers for contact passivation in c-Si solar cells are analyzed. We characterize the metal/TiOX/n-Si electron-selective contact with the contact recombination factor J0c and the contact resistivity ρc for the first time. Experimental results show that both J0c and ρc decrease after the insertion of TiOX. In addition, the effect of post-deposition rapid-thermal-annealing (RTA) at different temperatures is also evaluated. The best J0c of 5.5 pA/cm2 and the lowest ρc of 13.6 mΩ·cm2 are achieved after the RTA process. This work reveals the potential of TiOX as an electron-selective layer for contact passivation to enable high-efficiency ultra-thin c-Si solar cells with a low cost.

[1]  Á. Morales,et al.  Sol-gel TiO2 antireflective films for textured monocrystalline silicon solar cells , 2002 .

[2]  K. Weber,et al.  Al2O3/TiO2 stack layers for effective surface passivation of crystalline silicon , 2013 .

[3]  A. Walsh,et al.  Band alignment of rutile and anatase TiO₂. , 2013, Nature materials.

[4]  J. Rogers,et al.  Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides. , 2011, Nature communications.

[5]  Michael Grätzel,et al.  Photoelectrochemical cells , 2001, Nature.

[6]  Klaus Weber,et al.  Effective silicon surface passivation by atomic layer deposited Al2O3/TiO2 stacks , 2014 .

[7]  Bryce S. Richards,et al.  Novel uses of TiO/sub 2/ in crystalline silicon solar cells , 2000, Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036).

[8]  Ajeet Rohatgi,et al.  Rapid and Accurate Determination of Series Resistance and Fill Factor Losses in Industrial Silicon Solar Cells , 2001 .

[9]  G. Margaritondo,et al.  Electronic-Structure of Anatase Tio2 Oxide , 1994 .

[10]  Shanhui Fan,et al.  Large-area free-standing ultrathin single-crystal silicon as processable materials. , 2013, Nano letters.

[11]  R. Preu,et al.  20.1% Efficient Silicon Solar Cell With Aluminum Back Surface Field , 2011, IEEE Electron Device Letters.

[12]  Li Ji,et al.  Low temperature preparation of transparent, antireflective TiO2 films deposited at different O2/Ar ratios by microwave electron cyclotron resonance magnetron sputtering , 2012 .

[13]  Bryce S. Richards,et al.  Enhancing the surface passivation of TiO2 coated silicon wafers , 2002 .

[14]  A. Cuevas,et al.  Amorphous silicon enhanced metal-insulator-semiconductor contacts for silicon solar cells , 2014 .

[15]  R.A. Garcia,et al.  Determining Components of Series Resistance from Measurements on a Finished Cell , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[16]  Bryce S. Richards,et al.  Single-material TiO2 double-layer antireflection coatings , 2003 .

[17]  Georg Kresse,et al.  Direct view at excess electrons in TiO2 rutile and anatase. , 2014, Physical review letters.

[18]  D. Schroder Semiconductor Material and Device Characterization , 1990 .

[19]  Andres Cuevas,et al.  Passivation of aluminium–n+ silicon contacts for solar cells by ultrathin Al2O3 and SiO2 dielectric layers , 2013 .

[20]  B. Rezig,et al.  Preparation and characterization of TiO2 thin films grown by RF magnetron sputtering , 2008 .

[21]  Mikko Ritala,et al.  Atomic Layer Deposition of Photocatalytic TiO2 Thin Films from Titanium Tetramethoxide and Water , 2004 .

[22]  Nan Zhang,et al.  Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. , 2013, Nanoscale.

[23]  Ronald A. Sinton,et al.  Quasi-steady-state photoconductance, a new method for solar cell material and device characterization , 1996, Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996.

[24]  H. Hwang,et al.  TiO2-based metal-insulator-metal selection device for bipolar resistive random access memory cross-point application , 2011 .

[25]  Gang Xiong,et al.  Photoemission Electron Microscopy of TiO2 Anatase Films Embedded with Rutile Nanocrystals , 2007 .

[26]  Weidong Zhu,et al.  Low temperature synthesis of reduced titanium oxide nanotube arrays: Crystal structure transformation and enhanced field emission , 2014 .

[27]  Bruce A. Parkinson,et al.  Deep and Shallow TiO2 Gap States on Cleaved Anatase Single Crystal (101) Surfaces, Nanocrystalline Anatase Films, and ALD Titania Ante and Post Annealing , 2015 .

[28]  John A. Rogers,et al.  Light Trapping in Ultrathin Monocrystalline Silicon Solar Cells , 2013 .

[29]  R. M. Swanson,et al.  Measurement of the emitter saturation current by a contactless photoconductivity decay method , 1985 .

[30]  Armin G. Aberle,et al.  Surface passivation of crystalline silicon solar cells: a review , 2000 .

[31]  Andrew Thomson,et al.  Passivation of Silicon by Negatively Charged Tio2 , 2010 .

[32]  Jef Poortmans,et al.  Passivation of a Metal Contact with a Tunneling Layer , 2012 .

[33]  Georg Kresse,et al.  Hybrid functional studies of the oxygen vacancy in TiO 2 , 2010 .

[34]  Ing-Song Yu,et al.  Surface passivation of c-Si by Atomic Layer Deposition TiO2 thin films deposited at low temperature , 2014, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC).

[35]  Yi Cui,et al.  All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency , 2013, Nature Communications.

[36]  Tayfun Gokmen,et al.  Device characteristics of a 10.1% hydrazine‐processed Cu2ZnSn(Se,S)4 solar cell , 2012 .

[37]  H. Rogalla,et al.  Passivating TiO2 coatings for silicon solar cells by pulsed laser deposition , 1999 .

[38]  Maarten Debucquoy,et al.  Aluminum oxide-aluminum stacks for contact passivation in silicon solar cells , 2014 .

[39]  W. Warta,et al.  Solar cell efficiency tables (Version 45) , 2015 .

[40]  Bryce S. Richards,et al.  Comparison of TiO2 and other dielectric coatings for buried‐contact solar cells: a review , 2004 .

[41]  E. Yablonovitch,et al.  Limiting efficiency of silicon solar cells , 1984, IEEE Transactions on Electron Devices.

[42]  Yutaka Murakami,et al.  Defects in Anatase TiO2 Single Crystal Controlled by Heat Treatments , 2004 .

[43]  R. Soref,et al.  High efficiency thin-film crystalline Si/Ge tandem solar cell. , 2010, Optics express.

[44]  C. Faulkner,et al.  A new route to zero-barrier metal source/drain MOSFETs , 2004, IEEE Transactions on Nanotechnology.

[45]  V. K. Mahajan,et al.  Self-organized TiO2 nanotubular arrays for photoelectrochemical hydrogen generation: effect of crystallization and defect structures , 2008 .

[46]  Swook Hann,et al.  Structural and optical properties of TiO2 thin films annealed in O2 and N2 gases flow , 2010, OPTO.

[47]  Stefaan De Wolf,et al.  Passivated contacts to n+ and p+ silicon based on amorphous silicon and thin dielectrics , 2014, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC).

[48]  Ali K. Okyay,et al.  TiO2 thin film transistor by atomic layer deposition , 2013, Photonics West - Optoelectronic Materials and Devices.

[49]  B. Sopori Dielectric films for Si solar cell applications , 2005 .

[50]  Ing-Song Yu,et al.  Surface Passivation and Antireflection Behavior of ALD on n-Type Silicon for Solar Cells , 2013 .