A Benchmark and Simulator for UAV Tracking

In this paper, we propose a new aerial video dataset and benchmark for low altitude UAV target tracking, as well as, a photo-realistic UAV simulator that can be coupled with tracking methods. Our benchmark provides the first evaluation of many state-of-the-art and popular trackers on 123 new and fully annotated HD video sequences captured from a low-altitude aerial perspective. Among the compared trackers, we determine which ones are the most suitable for UAV tracking both in terms of tracking accuracy and run-time. The simulator can be used to evaluate tracking algorithms in real-time scenarios before they are deployed on a UAV “in the field”, as well as, generate synthetic but photo-realistic tracking datasets with automatic ground truth annotations to easily extend existing real-world datasets. Both the benchmark and simulator are made publicly available to the vision community on our website to further research in the area of object tracking from UAVs. (https://ivul.kaust.edu.sa/Pages/pub-benchmark-simulator-uav.aspx.).

[1]  Zdenek Kalal,et al.  Tracking-Learning-Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Widyawardana Adiprawita,et al.  Hardware‐in‐the‐loop simulation for visual target tracking of octorotor UAV , 2011 .

[3]  Shuicheng Yan,et al.  NUS-PRO: A New Visual Tracking Challenge , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[5]  Markus Schoeler,et al.  Semantic Pose Using Deep Networks Trained on Synthetic RGB-D , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[6]  Rui Caseiro,et al.  Exploiting the Circulant Structure of Tracking-by-Detection with Kernels , 2012, ECCV.

[7]  Deva Ramanan,et al.  Analysis by Synthesis: 3D Object Recognition by Object Reconstruction , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Bernard Ghanem,et al.  Target Response Adaptation for Correlation Filter Tracking , 2016, ECCV.

[9]  Sudipta N. Sinha,et al.  Monocular Localization of a moving person onboard a Quadrotor MAV , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[10]  Ming-Hsuan Yang,et al.  Object Tracking Benchmark , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Daniel Cremers,et al.  FollowMe: Person following and gesture recognition with a quadrocopter , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[12]  Helmut Grabner,et al.  Aerial object tracking from an airborne platform , 2014, 2014 International Conference on Unmanned Aircraft Systems (ICUAS).

[13]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Bernard Ghanem,et al.  Persistent Aerial Tracking system for UAVs , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[15]  Ming-Hsuan Yang,et al.  Visual tracking with online Multiple Instance Learning , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Matthew E. Antone,et al.  Detecting and tracking all moving objects in wide-area aerial video , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[17]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Changsheng Xu,et al.  Structural Sparse Tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Simone Calderara,et al.  Visual Tracking: An Experimental Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Erik Blasch,et al.  Encoding color information for visual tracking: Algorithms and benchmark , 2015, IEEE Transactions on Image Processing.

[21]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Jessica B. Hamrick,et al.  Simulation as an engine of physical scene understanding , 2013, Proceedings of the National Academy of Sciences.

[23]  Miguel A. Olivares-Méndez,et al.  Robust real-time vision-based aircraft tracking from Unmanned Aerial Vehicles , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[24]  Gérard G. Medioni,et al.  Persistent Tracking for Wide Area Aerial Surveillance , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[25]  Toby P. Breckon,et al.  Real-time people and vehicle detection from UAV imagery , 2011, Electronic Imaging.

[26]  Takeo Kanade,et al.  Learning scene-specific pedestrian detectors without real data , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Hans-Peter Seidel,et al.  An efficient construction of reduced deformable objects , 2013, ACM Trans. Graph..

[28]  Michael Felsberg,et al.  Learning Spatially Regularized Correlation Filters for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[29]  Jaakko Lehtinen,et al.  Online motion synthesis using sequential Monte Carlo , 2014, ACM Trans. Graph..

[30]  Jeremiah Neubert,et al.  On-Board Visual Tracking with Unmanned Aircraft System (UAS) , 2011, ArXiv.

[31]  Changsheng Xu,et al.  Object Tracking by Occlusion Detection via Structured Sparse Learning , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[32]  Peter V. Gehler,et al.  Teaching 3D geometry to deformable part models , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[33]  Changsheng Xu,et al.  Robust Visual Tracking via Exclusive Context Modeling , 2016, IEEE Transactions on Cybernetics.

[34]  Bernard Ghanem,et al.  Multi-template Scale-Adaptive Kernelized Correlation Filters , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[35]  Tianzhu Zhang,et al.  In Defense of Sparse Tracking: Circulant Sparse Tracker , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[37]  Bruce A. Draper,et al.  Visual object tracking using adaptive correlation filters , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[38]  Jun-yong Noh,et al.  Data-driven control of flapping flight , 2013, TOGS.

[39]  Robert T. Collins,et al.  An Open Source Tracking Testbed and Evaluation Web Site , 2005 .

[40]  Karl A. Stol,et al.  On-board object tracking control of a quadcopter with monocular vision , 2014, 2014 International Conference on Unmanned Aircraft Systems (ICUAS).

[41]  Pascual Campoy Cervera,et al.  Vision based GPS-denied Object Tracking and following for unmanned aerial vehicles , 2013, 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR).

[42]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  Zhe Chen,et al.  MUlti-Store Tracker (MUSTer): A cognitive psychology inspired approach to object tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[44]  Michael Felsberg,et al.  Accurate Scale Estimation for Robust Visual Tracking , 2014, BMVC.

[45]  Brian Wyvill,et al.  Robust iso-surface tracking for interactive character skinning , 2014, ACM Trans. Graph..

[46]  Roland Siegwart,et al.  People detection and tracking from aerial thermal views , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[47]  Stan Sclaroff,et al.  MEEM: Robust Tracking via Multiple Experts Using Entropy Minimization , 2014, ECCV.