Independent and parallel lateral transfer of DNA transposons in tetrapod genomes.

[1]  A. Korol,et al.  Non-alignment comparison of human and high primate genomes , 2011, 1111.6172.

[2]  M. A. McClure,et al.  The evolutionary dynamics of autonomous non-LTR retrotransposons in the lizard Anolis carolinensis shows more similarity to fish than mammals. , 2009, Molecular biology and evolution.

[3]  J. Jurka,et al.  New superfamilies of eukaryotic DNA transposons and their internal divisions. , 2009, Molecular biology and evolution.

[4]  Marlen S. Clark,et al.  Repeated horizontal transfer of a DNA transposon in mammals and other tetrapods , 2008, Proceedings of the National Academy of Sciences.

[5]  D. Ray,et al.  Multiple waves of recent DNA transposon activity in the bat, Myotis lucifugus. , 2008, Genome research.

[6]  C. Feschotte Transposable elements and the evolution of regulatory networks , 2008, Nature Reviews Genetics.

[7]  C. Feschotte,et al.  DNA transposons and the evolution of eukaryotic genomes. , 2007, Annual review of genetics.

[8]  B. Koop,et al.  Bursts and horizontal evolution of DNA transposons in the speciation of pseudotetraploid salmonids , 2007, BMC Genomics.

[9]  Matthew W. Dimmic,et al.  Genes under positive selection in Escherichia coli. , 2007, Genome research.

[10]  M. Benton,et al.  Rocks and clocks: calibrating the Tree of Life using fossils and molecules. , 2007, Trends in ecology & evolution.

[11]  N. Okada,et al.  Poxviruses as possible vectors for horizontal transfer of retroposons from reptiles to mammals , 2007, Proceedings of the National Academy of Sciences.

[12]  D. Ray,et al.  Bats with hATs: evidence for recent DNA transposon activity in genus Myotis. , 2006, Molecular biology and evolution.

[13]  D. Kordis,et al.  Phylogenomic analysis of the L1 retrotransposons in Deuterostomia. , 2006, Systematic biology.

[14]  S. Boissinot,et al.  Fitness cost of LINE-1 (L1) activity in humans. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[15]  D. Haussler,et al.  A distal enhancer and an ultraconserved exon are derived from a novel retroposon , 2006, Nature.

[16]  Stéphane Boissinot,et al.  Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates. , 2005, Genome research.

[17]  Olivier Gascuel,et al.  PHYML Online: A Web Server for Fast Maximum Likelihood-Based Phylogenetic Inference , 2018 .

[18]  J. Andersson,et al.  Lateral gene transfer in eukaryotes , 2005, Cellular and Molecular Life Sciences CMLS.

[19]  Michael P. Cummings,et al.  PAML (Phylogenetic Analysis by Maximum Likelihood) , 2004 .

[20]  H. Kazazian Mobile Elements: Drivers of Genome Evolution , 2004, Science.

[21]  W. Martin,et al.  Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes , 2004, Nature Reviews Genetics.

[22]  H. Won,et al.  Horizontal gene transfer from flowering plants to Gnetum , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Jeffrey D. Palmer,et al.  Widespread horizontal transfer of mitochondrial genes in flowering plants , 2003, Nature.

[24]  A. E. Hirsh,et al.  Size matters: non-LTR retrotransposable elements and ectopic recombination in Drosophila. , 2003, Molecular biology and evolution.

[25]  E. Eichler,et al.  Analysis of primate genomic variation reveals a repeat-driven expansion of the human genome. , 2003, Genome research.

[26]  Sudhir Kumar,et al.  MEGA2: molecular evolutionary genetics analysis software , 2001, Bioinform..

[27]  S. Boissinot,et al.  Adaptive evolution in LINE-1 retrotransposons. , 2001, Molecular biology and evolution.

[28]  A. Nekrutenko,et al.  Transposable elements are found in a large number of human protein-coding genes. , 2001, Trends in genetics : TIG.

[29]  W. Makałowski,et al.  Genomic scrap yard: how genomes utilize all that junk. , 2000, Gene.

[30]  D. Labuda,et al.  CORE-SINEs: eukaryotic short interspersed retroposing elements with common sequence motifs. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[31]  D. Kordis,et al.  Unusual horizontal transfer of a long interspersed nuclear element between distant vertebrate classes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[32]  H. Robertson,et al.  Recent horizontal transfer of a mariner transposable element among and between Diptera and Neuroptera. , 1995, Molecular biology and evolution.

[33]  M. G. Kidwell,et al.  Evidence for horizontal transmission of the P transposable element between Drosophila species. , 1990, Genetics.

[34]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[35]  M. Kimura A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.

[36]  Eugene W. Myers,et al.  PILER: identification and classification of genomic repeats , 2005, ISMB.

[37]  Ziheng Yang,et al.  Phylogenetic Analysis by Maximum Likelihood (PAML) , 2002 .

[38]  Z. Yang,et al.  Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. , 2000, Molecular biology and evolution.

[39]  A. Furano,et al.  The biological properties and evolutionary dynamics of mammalian LINE-1 retrotransposons. , 2000, Progress in nucleic acid research and molecular biology.

[40]  T. A. Hall,et al.  BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT , 1999 .

[41]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..