Facile synthesis of salmochelin S1, S2, MGE, DGE, and TGE

[1]  A. Butler,et al.  Microbial iron acquisition: marine and terrestrial siderophores. , 2009, Chemical reviews.

[2]  K. Raymond,et al.  Enzymatic hydrolysis of trilactone siderophores: where chiral recognition occurs in enterobactin and bacillibactin iron transport. , 2009, Journal of the American Chemical Society.

[3]  K. Hantke,et al.  Salmochelin, the long-overlooked catecholate siderophore of Salmonella , 2009, BioMetals.

[4]  K. Hale,et al.  Total synthesis of (+)-azinothricin and (+)-kettapeptin. , 2009, Organic letters.

[5]  Jide Xu,et al.  The role of electrostatics in siderophore recognition by the immunoprotein Siderocalin. , 2008, Journal of the American Chemical Society.

[6]  Christopher Wostenberg,et al.  Carbamate triserine lactone receptors for anion recognition , 2008 .

[7]  M. R. Gagné,et al.  Diastereoselective Ni-catalyzed Negishi cross-coupling approach to saturated, fully oxygenated C-alkyl and C-aryl glycosides. , 2008, Journal of the American Chemical Society.

[8]  C. Dozois,et al.  Specific Roles of the iroBCDEN Genes in Virulence of an Avian Pathogenic Escherichia coli O78 Strain and in Production of Salmochelins , 2008, Infection and Immunity.

[9]  F. Fang,et al.  Biosynthesis and IroC‐dependent export of the siderophore salmochelin are essential for virulence of Salmonella enterica serovar Typhimurium , 2008, Molecular microbiology.

[10]  M. Fischbach,et al.  Biosynthetic tailoring of microcin E492m: post-translational modification affords an antibacterial siderophore-peptide conjugate. , 2007, Journal of the American Chemical Society.

[11]  M. Skwarczynski,et al.  "O-acyl isopeptide method" for peptide synthesis: synthesis of forty kinds of "O-acyl isodipeptide unit" Boc-Ser/Thr(Fmoc-Xaa)-OH. , 2007, Organic & biomolecular chemistry.

[12]  M. R. Gagné,et al.  A room temperature negishi cross-coupling approach to C-alkyl glycosides. , 2007, Journal of the American Chemical Society.

[13]  Kelly D. Smith Iron metabolism at the host pathogen interface: lipocalin 2 and the pathogen-associated iroA gene cluster. , 2007, The international journal of biochemistry & cell biology.

[14]  S. Benner,et al.  A Review: Synthesis of Aryl C-Glycosides Via the Heck Coupling Reaction , 2006 .

[15]  David R. Liu,et al.  Bromoenterobactins as potent inhibitors of a pathogen-associated, siderophore-modifying C-glycosyltransferase. , 2006, Journal of the American Chemical Society.

[16]  A. Murata,et al.  Synthesis of a novel ester analog of nucleic acids bearing a serine backbone. , 2006, Bioorganic & medicinal chemistry letters.

[17]  Hening Lin,et al.  How pathogenic bacteria evade mammalian sabotage in the battle for iron , 2006, Nature chemical biology.

[18]  J. Thorson,et al.  Structure, activity, synthesis and biosynthesis of aryl-C-glycosides. , 2005, Natural product reports.

[19]  D. Y. Lee,et al.  Recent advances in aryl C-glycoside synthesis. , 2005, Current topics in medicinal chemistry.

[20]  David R. Liu,et al.  In vitro characterization of salmochelin and enterobactin trilactone hydrolases IroD, IroE, and Fes. , 2005, Journal of the American Chemical Society.

[21]  David R. Liu,et al.  In vitro characterization of IroB, a pathogen-associated C-glycosyltransferase. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[22]  K. Hantke,et al.  The structure of salmochelins: C-glucosylated enterobactins of Salmonella enterica§ , 2004, Biometals.

[23]  W. Rabsch,et al.  Salmochelins, siderophores of Salmonella enterica and uropathogenic Escherichia coli strains, are recognized by the outer membrane receptor IroN , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[24]  K. Raymond,et al.  Corynebactin and enterobactin: related siderophores of opposite chirality. , 2002, Journal of the American Chemical Society.

[25]  R. Linhardt,et al.  Recent Advances in Stereoselective C-Glycoside Synthesis , 1998 .

[26]  Seth M. Cohen,et al.  High-Yield Synthesis of the Enterobactin Trilactone and Evaluation of Derivative Siderophore Analogs1 , 1997 .

[27]  Robert J. A. Ramirez,et al.  A much improved synthesis of the siderophore enterobactin , 1997 .

[28]  M. Postema C-Glycoside Synthesis , 1995 .

[29]  K. Raymond,et al.  Solution equilibria of enterobactin and metal-enterobactin complexes , 1991 .

[30]  I. E. Kopka Selective semisynthetic modification of L-156,602, a novel cyclic hexadepsipeptide antibiotic , 1990 .

[31]  M. Venuti,et al.  Synthesis of iron chelators. Enterobactin, enantioenterobactin, and a chiral analog , 1981 .

[32]  A. Avdeef,et al.  COORDINATION CHEMISTRY OF MICROBIAL IRON TRANSPORT COMPOUNDS. 19. STABILITY CONSTANTS AND ELECTROCHEMICAL BEHAVIOR OF FERRIC ENTEROBACTIN AND MODEL COMPLEXES , 1979 .

[33]  J. Meienhofer Syntheses of actinomycin and analogs. 3. A total synthesis of actinomycin D (Cl) via peptide cyclization between proline and sarcosine. , 1970, Journal of the American Chemical Society.