Machine Learning pipeline for discovering neuroimaging-based biomarkers in neurology and psychiatry

We consider a problem of diagnostic pattern recognition/classification from neuroimaging data. We propose a common data analysis pipeline for neuroimaging-based diagnostic classification problems using various ML algorithms and processing toolboxes for brain imaging. We illustrate the pipeline application by discovering new biomarkers for diagnostics of epilepsy and depression based on clinical and MRI/fMRI data for patients and healthy volunteers.

[1]  Vadim Ushakov,et al.  Information transfer between rich-club structures in the human brain , 2018 .

[2]  Alberto D. Pascual-Montano,et al.  A survey of dimensionality reduction techniques , 2014, ArXiv.

[3]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[4]  N. Altman An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression , 1992 .

[5]  Paul J. Laurienti,et al.  An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets , 2003, NeuroImage.

[6]  Xilin Shen,et al.  Low-dimensional embedding of fMRI datasets , 2007, NeuroImage.

[7]  Luca Faes,et al.  MuTE: A MATLAB Toolbox to Compare Established and Novel Estimators of the Multivariate Transfer Entropy , 2014, PloS one.

[8]  Joseph JáJá,et al.  LEICA: Laplacian eigenmaps for group ICA decomposition of fMRI data , 2018, NeuroImage.

[9]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[10]  Bostjan Likar,et al.  A Review of Methods for Correction of Intensity Inhomogeneity in MRI , 2007, IEEE Transactions on Medical Imaging.

[11]  Ludovica Griffanti,et al.  Automatic denoising of functional MRI data: Combining independent component analysis and hierarchical fusion of classifiers , 2014, NeuroImage.

[12]  Vladimir Vovk,et al.  A tutorial on conformal prediction , 2007, J. Mach. Learn. Res..

[13]  Evgeny Burnaev,et al.  One-Class SVM with Privileged Information and Its Application to Malware Detection , 2016, 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW).

[14]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[15]  Nan Xu,et al.  Initial Validation for the Estimation of Resting-State fMRI Effective Connectivity by a Generalization of the Correlation Approach , 2016, Front. Neurosci..

[16]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[17]  Alexander Bernstein,et al.  MRI brain imagery processing software in data analysis , 2018, Trans. Mass Data Anal. Images Signals.

[18]  Evgeny Burnaev,et al.  Large-Scale Shape Retrieval with Sparse 3D Convolutional Neural Networks , 2017, AIST.

[19]  Amanmeet Garg Novel geometry and function based topological data analysis in neuroimaging data , 2017 .

[20]  Benson Mwangi,et al.  A Review of Feature Reduction Techniques in Neuroimaging , 2013, Neuroinformatics.

[21]  Evgeny V. Burnaev,et al.  On a method for constructing ensembles of regression models , 2013, Autom. Remote. Control..

[22]  Evgeny Burnaev,et al.  The influence of parameter initialization on the training time and accuracy of a nonlinear regression model , 2016 .

[23]  Mohammad Reza Daliri,et al.  Software Tools for the Analysis of Functional Magnetic Resonance Imaging , 2012 .

[24]  Arno Klein,et al.  Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration , 2009, NeuroImage.

[25]  Alexander P. Kuleshov,et al.  Low-Dimensional Data Representation in Data Analysis , 2014, ANNPR.

[26]  Vladimir Vovk,et al.  Efficiency of conformalized ridge regression , 2014, COLT.

[27]  M. R. Mickey,et al.  Estimation of Error Rates in Discriminant Analysis , 1968 .

[28]  Vince D. Calhoun,et al.  Deep learning for neuroimaging: a validation study , 2013, Front. Neurosci..

[29]  Pierre Geurts,et al.  Extremely randomized trees , 2006, Machine Learning.

[30]  V. M. Verkhlyutov,et al.  Dynamic Causal Modeling of Hippocampal Links within the Human Default Mode Network: Lateralization and Computational Stability of Effective Connections , 2016, Front. Hum. Neurosci..

[31]  Evgeny Burnaev,et al.  Conformalized Kernel Ridge Regression , 2016, 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA).

[32]  Thomas E. Nichols,et al.  Functional connectomics from resting-state fMRI , 2013, Trends in Cognitive Sciences.

[33]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[34]  Steen Moeller,et al.  ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging , 2014, NeuroImage.

[35]  Dinggang Shen,et al.  State-space model with deep learning for functional dynamics estimation in resting-state fMRI , 2016, NeuroImage.

[36]  Christopher J. C. Burges,et al.  Dimension Reduction: A Guided Tour , 2010, Found. Trends Mach. Learn..

[37]  Mahantapas Kundu,et al.  The journey of graph kernels through two decades , 2018, Comput. Sci. Rev..

[38]  Xin Wang,et al.  Depression Disorder Classification of fMRI Data Using Sparse Low-Rank Functional Brain Network and Graph-Based Features , 2017, Comput. Math. Methods Medicine.

[39]  Marleen de Bruijne,et al.  Machine learning approaches in medical image analysis: From detection to diagnosis , 2016, Medical Image Anal..

[40]  O. Abe,et al.  Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: evidence from voxel-based meta-analysis , 2016, Molecular Psychiatry.

[41]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[42]  Evgeny Burnaev,et al.  Model selection for anomaly detection , 2015, International Conference on Machine Vision.

[43]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2004 .

[44]  Harris Papadopoulos,et al.  Regression Conformal Prediction with Nearest Neighbours , 2014, J. Artif. Intell. Res..

[45]  I. Jolliffe Principal Component Analysis , 2002 .

[46]  Fatos Xhafa,et al.  Geometrical and topological approaches to Big Data , 2017, Future Gener. Comput. Syst..

[48]  J. Pipe Motion correction with PROPELLER MRI: Application to head motion and free‐breathing cardiac imaging , 1999, Magnetic resonance in medicine.

[49]  Karl J. Friston,et al.  Slice-timing effects and their correction in functional MRI , 2011, NeuroImage.

[50]  James G. King,et al.  An algorithm to predict the connectome of neural microcircuits , 2015, Front. Comput. Neurosci..

[51]  Evgeny Burnaev,et al.  Influence of resampling on accuracy of imbalanced classification , 2015, International Conference on Machine Vision.

[52]  S. Costafreda,et al.  Neuroimaging-Based Biomarkers in Psychiatry: Clinical Opportunities of a Paradigm Shift , 2013, Canadian journal of psychiatry. Revue canadienne de psychiatrie.

[53]  Guang-Zhong Yang,et al.  Deep Learning for Health Informatics , 2017, IEEE Journal of Biomedical and Health Informatics.

[54]  Kaori Togashi,et al.  MRI artifact reduction and quality improvement in the upper abdomen with PROPELLER and prospective acquisition correction (PACE) technique. , 2008, AJR. American journal of roentgenology.

[55]  Tzu-Tsung Wong,et al.  Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation , 2015, Pattern Recognit..

[56]  Jean-Baptiste Poline,et al.  Dealing with the shortcomings of spatial normalization: Multi‐subject parcellation of fMRI datasets , 2006, Human brain mapping.

[57]  Vadim Ushakov,et al.  Causal Interactions Within the Default Mode Network as Revealed by Low-Frequency Brain Fluctuations and Information Transfer Entropy , 2016 .

[58]  Evgeny Burnaev,et al.  On an iterative algorithm for calculating weighted principal components , 2015 .

[59]  Yong-Ku Kim,et al.  Application of machine learning classification for structural brain MRI in mood disorders: Critical review from a clinical perspective , 2018, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[60]  W. Gasarch,et al.  The Book Review Column 1 Coverage Untyped Systems Simple Types Recursive Types Higher-order Systems General Impression 3 Organization, and Contents of the Book , 2022 .

[61]  S. Arridge,et al.  Sources of intensity nonuniformity in spin echo images at 1.5 T , 1994, Magnetic resonance in medicine.

[62]  Aapo Hyvärinen,et al.  Survey on Independent Component Analysis , 1999 .

[63]  D. Hurter,et al.  A short overview of MRI artefacts , 2004 .

[64]  John W. Tukey,et al.  A Projection Pursuit Algorithm for Exploratory Data Analysis , 1974, IEEE Transactions on Computers.

[65]  Yong He,et al.  Graph-based network analysis of resting-state functional MRI. , 2010 .

[66]  Olivier D. Faugeras,et al.  Nonlinear dimension reduction of fMRI data: the Laplacian embedding approach , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[67]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[68]  H. Edelsbrunner,et al.  Persistent Homology — a Survey , 2022 .

[69]  B. Velichkovsky,et al.  Effective Connectivity within the Default Mode Network: Dynamic Causal Modeling of Resting-State fMRI Data , 2016, Front. Hum. Neurosci..