On integer-sequence-based constructions of generalized Pascal triangles, J. Integer Sequences
暂无分享,去创建一个
[1] David Thomas,et al. The Art in Computer Programming , 2001 .
[2] Tony D. Noe. On the Divisibility of Generalized Central Trinomial Coefficients , 2022 .
[3] William Y. C. Chen,et al. Identities from weighted Motzkin paths , 2008, Adv. Appl. Math..
[4] Thomas M. Richardson,et al. The Filbert Matrix , 1999 .
[5] Renzo Sprugnoli,et al. Riordan arrays and combinatorial sums , 1994, Discret. Math..
[6] Louis W. Shapiro,et al. The Riordan group , 1991, Discret. Appl. Math..
[7] Curtis Coker,et al. Enumerating a class of lattice paths , 2003, Discret. Math..
[8] Sherry H. F. Yan,et al. Identities from Weighted 2-Motzkin Paths , 2007 .
[9] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[10] Robert A. Sulanke,et al. Counting Lattice Paths by Narayana Polynomials , 2000, Electron. J. Comb..
[11] Ewa Krot,et al. An introduction to finite fibonomial calculus , 2004, ArXiv.
[12] Robert A. Sulanke,et al. Generalizing Narayana and Schröder Numbers to Higher Dimensions , 2004, Electron. J. Comb..
[13] Louis W. Shapiro,et al. Bijections and the Riordan group , 2003, Theor. Comput. Sci..
[14] A. Edwards. Pascal's arithmetical triangle , 1987 .
[15] Robert A. Sulanke,et al. The Narayana distribution , 2002 .
[16] Ira M. Gessel,et al. Determinants, Paths, and Plane Partitions , 1989 .